POJ 1861 & ZOJ 1542 Network(最小生成树之Krusal)
题目链接:
PKU:http://poj.org/problem?id=1861
ZJU:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=542
Description
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections.
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied.
Input
Output
Sample Input
4 6 1 2 1 1 3 1 1 4 2 2 3 1 3 4 1 2 4 1
Sample Output
1 4 1 2 1 3 2 3 3 4
Source
PS:
貌似题目的案例有点问题,卡了好久!
代码如下:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int inf = 9999999; const int maxn = 15017; int father[maxn]; struct edge { int x,y,v; }; struct edge ed[maxn],ansa[maxn]; bool cmp(edge a,edge b) { return a.v<b.v; } int find(int x) { if(x==father[x]) return x; return father[x]=find(father[x]); } void Krusal(int n,int m) { int i,fx,fy,cnt; int ans=0; for(i = 1; i <= n; i++) father[i]=i; sort(ed,ed+m,cmp);//对边的排序 cnt=0; int max=-1; for(i=0; i<m; i++) { fx=find(ed[i].x); fy=find(ed[i].y); if(fx!=fy) { ans+=ed[i].v; father[fx]=fy; ansa[cnt].x=ed[i].x; ansa[cnt++].y=ed[i].y; if(max<ed[i].v) max=ed[i].v; } } printf("%d\n%d\n",max,cnt); for(i=0; i<cnt; i++) printf("%d %d\n",ansa[i].x,ansa[i].y); } int main() { int t; int n, m; int a, b, k; while(scanf("%d %d",&n,&m)!=EOF) { for(int i = 0; i < m; i++) { scanf("%d %d %d",&a,&b,&k); ed[i].x=a,ed[i].y=b,ed[i].v=k; } Krusal(n,m); } return 0; }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。