BZOJ 3732 Network Link-Cut-Tree (我是认真的!!
题目大意:给定一个n个点m条边的无向连通图,k次询问两点之间所有路径中最长边的最小值
LCT的裸题!首先维护一个动态的最小生成树,然后每次加入边时删除两点间路径上权值最大的边!最后询问时直接求x到y链上的最大权值即可!水爆了!!
。。。好吧开玩笑的 真正的题解见http://blog.csdn.net/popoqqq/article/details/39755703
我只是闲得无聊水一发LCT罢了0.0
TLE了好久。。。因为有边权为0的边我没更新。。。
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define M 15010 #define INF 2147483647 using namespace std; struct edge{ int x,y,z; }e[M<<1]; struct abcd{ abcd *fa,*ls,*rs; int num,maxedge; bool rev_mark; abcd(int x); void Reverse(); void Push_Up(); void Push_Down(); }*null=new abcd(0),*tree[M],*edges[M<<1]; abcd :: abcd(int x) { fa=ls=rs=null; num=maxedge=x; rev_mark=0; } void abcd :: Reverse() { rev_mark^=1; swap(ls,rs); } void abcd :: Push_Up() { int maxnum=-1; if(e[ls->maxedge].z>maxnum) maxnum=e[ls->maxedge].z,maxedge=ls->maxedge; if(e[rs->maxedge].z>maxnum) maxnum=e[rs->maxedge].z,maxedge=rs->maxedge; if(e[num].z>maxnum) maxedge=num; } void abcd :: Push_Down() { if(fa->ls==this||fa->rs==this) fa->Push_Down(); if(rev_mark) { ls->Reverse(); rs->Reverse(); rev_mark=0; } } void Zig(abcd *x) { abcd *y=x->fa; y->ls=x->rs; x->rs->fa=y; x->rs=y; x->fa=y->fa; if(y==y->fa->ls) y->fa->ls=x; else if(y==y->fa->rs) y->fa->rs=x; y->fa=x; y->Push_Up(); } void Zag(abcd *x) { abcd *y=x->fa; y->rs=x->ls; x->ls->fa=y; x->ls=y; x->fa=y->fa; if(y==y->fa->ls) y->fa->ls=x; else if(y==y->fa->rs) y->fa->rs=x; y->fa=x; y->Push_Up(); } void Splay(abcd *x) { x->Push_Down(); while(x->fa->ls==x||x->fa->rs==x) { abcd *y=x->fa,*z=y->fa; if(x==y->ls) { if(y==z->ls) Zig(y); Zig(x); } else { if(y==z->rs) Zag(y); Zag(x); } } x->Push_Up(); } void Access(abcd *x) { abcd *y=null; while(x!=null) { Splay(x); x->rs=y; x->Push_Up(); y=x; x=x->fa; } } abcd* Find_Root(abcd *x) { while(x->fa!=null) x=x->fa; return x; } void Move_To_Root(abcd *x) { Access(x); Splay(x); x->Reverse(); } void Link(abcd *x,abcd *y) { Move_To_Root(x); x->fa=y; } void Cut(abcd *x,abcd *y) { Move_To_Root(x); Access(y); Splay(y); x->fa=null; y->ls=null; y->Push_Up(); } int Query(abcd *x,abcd *y) { Move_To_Root(x); Access(y); Splay(y); return y->maxedge; } int n,m,k; void Insert(abcd *x,abcd *y,int pos) { if(e[pos].x==e[pos].y) return ; if( Find_Root(x)==Find_Root(y) ) { int temp=Query(x,y); if(e[temp].z<=e[pos].z) return; Cut(edges[temp],tree[e[temp].x]); Cut(edges[temp],tree[e[temp].y]); } //if( Find_Root(x)==Find_Root(y) ) // printf("%d\n",1/0); Link(x,edges[pos]); Link(y,edges[pos]); } int main() { int i,x,y; cin>>n>>m>>k; for(i=1;i<=n;i++) tree[i]=new abcd(0); for(i=1;i<=m;i++) edges[i]=new abcd(i); for(i=1;i<=m;i++) { scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].z); Insert(tree[e[i].x],tree[e[i].y],i); } for(i=1;i<=k;i++) { scanf("%d%d",&x,&y); printf("%d\n", e[Query(tree[x],tree[y])].z ); } }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。