three.js 源码注释(十五)Math/Plane.js
商域无疆 (http://blog.csdn.net/omni360/)
本文遵循“署名-非商业用途-保持一致”创作公用协议
转载请保留此句:商域无疆 - 本博客专注于 敏捷开发及移动和物联设备研究:数据可视化、GOLANG、Html5、WEBGL、THREE.JS,否则,出自本博客的文章拒绝转载或再转载,谢谢合作。
俺也是刚开始学,好多地儿肯定不对还请见谅.
以下代码是THREE.JS 源码文件中Math/Plane.js文件的注释.
更多更新在 : https://github.com/omni360/three.js.sourcecode/blob/master/Three.js
// File:src/math/Plane.js /** * @author bhouston / http://exocortex.com */ /* ///Plane对象的构造函数.用来在三维空间内创建一个法线向量为normal,从原点到平面的距离为constant的无限延展的二维平面对象.Plane对象的功能函数采用 ///定义构造的函数原型对象来实现. /// /// 用法: var normal = new Vector3(0,0,0),constant = 5.5; var Plane = new Plane(normal,constant); ///创建一个法线向量是0,0,0原点到平面的距离是5.5的二维平面. */ ///<summary>Plane</summary> ///<param name ="normal" type="Vector3">平面法线向量</param> ///<param name ="constant" type="Number">Number二维平面离原点的距离</param> THREE.Plane = function ( normal, constant ) { this.normal = ( normal !== undefined ) ? normal : new THREE.Vector3( 1, 0, 0 ); //赋值或者初始化normal this.constant = ( constant !== undefined ) ? constant : 0; //赋值或者初始化constant }; /**************************************** ****下面是Plane对象提供的功能函数. ****************************************/ THREE.Plane.prototype = { constructor: THREE.Plane, //构造器,返回对创建此对象的Plane函数的引用 /* ///set方法用来重新设置二维平面的法线向量normal,原点到平面的距离constant,并返回新的二维平面. */ ///<summary>set</summary> ///<param name ="normal" type="Vector3">平面法线向量</param> ///<param name ="constant" type="Number">Number二维平面离原点的距离</param> ///<returns type="Plane">返回新的二维平面</returns> set: function ( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; //返回新的二维平面 }, /* ///setComponents方法用来通过x,y,z,w分量重新设置二维平面的法线向量normal,原点到平面的距离constant,并返回新的二维平面. */ ///<summary>setComponents</summary> ///<param name ="normal" type="Vector3">平面法线向量</param> ///<param name ="x" type="Number">平面法线向量x坐标</param> ///<param name ="y" type="Number">平面法线向量y坐标</param> ///<param name ="z" type="Number">平面法线向量z坐标</param> ///<param name ="w" type="Number">Number二维平面离原点的距离w</param> ///<returns type="Plane">返回新的二维平面</returns> setComponents: function ( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; //返回新的二维平面 }, /* ///setFromNormalAndCoplanarPoint方法用来通过参数normal(平面法线向量)和参数point(共面的点)重新设置二维平面的法线向量normal,原点到平面的距离constant,并返回新的二维平面. */ ///<summary>setFromNormalAndCoplanarPoint</summary> ///<param name ="normal" type="Vector3">平面法线向量</param> ///<param name ="point" type="Vector3">共面的点</param> ///<returns type="Plane">返回新的二维平面</returns> setFromNormalAndCoplanarPoint: function ( normal, point ) { this.normal.copy( normal ); //下面point.dot()方法只接收this.normal,不接收normal,this.normal是被规范化的,是单位向量 this.constant = - point.dot( this.normal ); // must be this.normal, not normal, as this.normal is normalized return this; //并返回新的二维平面 }, /* ///setFromCoplanarPoints方法用来通过共面的点a,b,c重新设置二维平面的法线向量normal,原点到平面的距离constant,并返回新的二维平面. /// NOTE:setFromCoplanarPoints方法接受的3个点a,b,c,需要按照逆时针方向的顺序传入,来确定发现的方向. */ ///<summary>setFromCoplanarPoints</summary> ///<param name ="a" type="Vector3">共面的点a</param> ///<param name ="b" type="Vector3">共面的点b</param> ///<param name ="c" type="Vector3">共面的点c</param> ///<returns type="Plane">返回新的二维平面</returns> setFromCoplanarPoints: function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); return function ( a, b, c ) { var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize(); //先得到向量c,b的差,通过cross方法获得向量a,b差的交叉乘积(交叉乘积垂直于向量a,b所在的平面),然后在调用normalize()方法获得单位向量. // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? //NOTE: 如果法向量normal是0,会产生一个无效的平面对象. this.setFromNormalAndCoplanarPoint( normal, a ); //setFromNormalAndCoplanarPoint方法用来通过参数normal(平面法线向量)和参数point(共面的点)重新设置二维平面的法线向量normal,原点到平面的距离constant,并返回新的二维平面. return this; //返回新的二维平面 }; }(), /* ///copy方法用来复制二维平面的法线向量normal,原点到平面的距离constant值.返回新的二维平面 ///TODO: copy方法和clone方法有什么不同? */ ///<summary>copy</summary> ///<param name ="Plane" type="Plane">二维平面</param> ///<returns type="Plane">返回新的二维平面</returns> copy: function ( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; //返回新的二维平面 }, /* ///normalize方法用来规范化法线向量,并调整constant常量的值(获得单位平面). */ ///<summary>normalize</summary> ///<returns type="Plane">返回规范化后的二维平面(获得单位平面)</returns> normalize: function () { // Note: will lead to a divide by zero if the plane is invalid. // NOTE: 注意如果平面无效将产生除数是0的错误. var inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; //返回规范化的二维平面(获得单位平面) }, /* ///negate方法用来翻转法线,获得当前平面的背面, */ ///<summary>negate</summary> ///<returns type="Plane">返回当前平面的背面</returns> negate: function () { this.constant *= - 1; this.normal.negate(); //翻转法线,Vector3.negate方法将当前三维向量的(x,y,z)坐标值若为负数时,返回正数. 而当前三维向量的(x,y,z)坐标值若为正数时,返回负数. return this; //返回当前平面的背面 }, /* ///distanceToPoint方法用来获得三维空间内一点到Plane二维平面对象表面的最小长度. */ ///<summary>distanceToPoint</summary> ///<param name ="point" type="Vector3">一个三维空间内的Vector3的三维点坐标</param> ///<returns type="Number">返回三维空间内一点到Plane二维平面对象表面的最小长度.</returns> distanceToPoint: function ( point ) { return this.normal.dot( point ) + this.constant; //返回三维空间内一点到Plane二维平面对象表面的最小长度 }, /* ///distanceToPoint方法用来获得Plane二维平面对象到三维空间内一个球体表面的最小长度.() */ ///<summary>distanceToPoint</summary> ///<param name ="sphere" type="Sphere">一个三维空间内的Sphere的球体对象</param> ///<returns type="Number">返回三维空间内Plane二维平面对象到三维空间内一个球体表面的最小长度.</returns> distanceToSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; //返回三维空间内Plane二维平面对象到三维空间内一个球体表面的最小长度 }, /* ///projectPoint方法返回三维空间中一点到当前平面的投影.点到面上的投影等于从参数point到平面上的垂足,所以从垂足画条线到点垂直于平面. */ ///<summary>projectPoint</summary> ///<param name ="point" type="Vector3">Vector3三维向量</param> ///<param name ="optionalTarget" type="Vector3">可选参数,接收返回结果</param> ///<returns type="Number">返回点到平面的投影</returns> projectPoint: function ( point, optionalTarget ) { return this.orthoPoint( point, optionalTarget ).sub( point ).negate(); //调用orthoPoint()方法,减去point,返回取反的结果 }, /* ///orthoPoint方法返回一个与当前二维平面对象法线向量方向相同,与参数point到平面距离相等大小的向量(垂足).如果设置了optionalTarget参数,将结果保存在optionalTarget里. */ ///<summary>orthoPoint</summary> ///<param name ="point" type="Vector3">Vector3三维向量</param> ///<param name ="optionalTarget" type="Vector3">可选参数,接收返回结果</param> ///<returns type="Vector3">返回一个与当前二维平面对象法线向量方向相同,与参数point到平面距离相等大小的向量(垂足).</returns> orthoPoint: function ( point, optionalTarget ) { var perpendicularMagnitude = this.distanceToPoint( point ); //获得平面到参数point的距离,赋值给prependicularMagnitude var result = optionalTarget || new THREE.Vector3(); //生命变量resault,用来存放结果 return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude ); //调用multiplyScalar(perpendicularMagnitude)方法,将当前二维平面的法向量的分量x,y,z分别乘以获得平面到参数point的距离.最后返回计算结果. }, /* ///isIntersectionLine方法获取当前二维平面是否与参数line相交,返回true 或者 false */ ///<summary>isIntersectionLine</summary> ///<param name ="line" type="Line3">三维空间中的线Line3</param> ///<returns type="Boolean">返回true 或者 false</returns> isIntersectionLine: function ( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. // NOTE:isIntersectionLine()是测试线和面是否相交,不是误以为线和面是否共面 var startSign = this.distanceToPoint( line.start ); var endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); //返回true 或者 false }, /* ///intersectLine方法获取当前二维平面与参数line相交的交点,如果和参数Line不相交返回undefined,如果线和当前二维平面共面返回线的起点. */ ///<summary>isIntersectionLine</summary> ///<param name ="line" type="Line3">三维空间中的线Line3</param> ///<param name ="optionalTarget" type="Vector3">可选参数,接收返回结果</param> ///<returns type="Boolean">返回当前二维平面与参数line相交的交点,如果和参数Line不相交或其它未知返回undefined,如果线和当前二维平面共面返回线的起点.</returns> intersectLine: function () { var v1 = new THREE.Vector3(); return function ( line, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); var direction = line.delta( v1 ); var denominator = this.normal.dot( direction ); if ( denominator == 0 ) { // line is coplanar, return origin // 如果线和当前二维平面共面返回线的起点 if ( this.distanceToPoint( line.start ) == 0 ) { return result.copy( line.start ); } // Unsure if this is the correct method to handle this case. // 如果其它未知返回undefined return undefined; } var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return undefined; //如果和参数Line不相交返回undefined } return result.copy( direction ).multiplyScalar( t ).add( line.start ); //返回当前二维平面与参数line相交的交点 }; }(), /* ///coplanarPoint方法获取当前二维平面的法线向量到当前二维平面投影(垂足,与当前平面的共面的点). ///TODO:这里没有弄明白,有时间在弄清楚,高中几何都快忘光了,钻牛角尖了.不过知道在下面应用变换时调用了. */ ///<summary>coplanarPoint</summary> ///<param name ="optionalTarget" type="Vector3">可选参数,接收返回结果</param> ///<returns type="Boolean">返回共面的点.</returns> coplanarPoint: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.copy( this.normal ).multiplyScalar( - this.constant ); //返回共面的点 }, /* ///applyMatrix4方法通过传递matrix(旋转,缩放,移动等变换矩阵)对当前Plane二维平面对象的法线向量normal和,应用变换. */ ///<summary>applyMatrix4</summary> ///<param name ="matrix" type="Matrix4">(旋转,缩放,移动等变换矩阵</param> ///<param name ="optionalNormalMatrix" type="Matrix3">可选参数,如果设置了就会对法线应用(旋转,缩放,移动等变换矩阵</param> ///<returns type="Boolean">返回变换后的二维平面.</returns> applyMatrix4: function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); var m1 = new THREE.Matrix3(); return function ( matrix, optionalNormalMatrix ) { // compute new normal based on theory here: // http://www.songho.ca/opengl/gl_normaltransform.html var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix ); var newNormal = v1.copy( this.normal ).applyMatrix3( normalMatrix ); var newCoplanarPoint = this.coplanarPoint( v2 ); //获得共面的点 newCoplanarPoint.applyMatrix4( matrix ); this.setFromNormalAndCoplanarPoint( newNormal, newCoplanarPoint ); //setFromNormalAndCoplanarPoint方法用来通过参数normal(平面法线向量)和参数point(共面的点)重新设置二维平面的法线向量normal,原点到平面的距离constant,并返回新的二维平面. return this; //返回变换后的二维平面 }; }(), /* ///translate方法用来通过参数offset,移动当前二维平面的位置. */ ///<summary>translate</summary> ///<param name ="offset" type="Vector3">偏移量</param> ///<returns type="Boolean">返回新的二维平面</returns> translate: function ( offset ) { this.constant = this.constant - offset.dot( this.normal ); return this; //返回新的二维平面 }, /* ///equals方法用来获得参数Plane(一个Plane的二维平面)是否与当前二维平面完全相等,即法线向量normal和半径相等. */ ///<summary>equals</summary> ///<param name ="Plane" type="Plane">一个Plane的二维平面</param> ///<returns type="Boolean">返回true 或者 false</returns> equals: function ( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant == this.constant ); //返回true 或者 false }, /*clone方法 ///clone方法克隆一个二维平面对象. */ ///<summary>clone</summary> ///<returns type="Plane">返回二维平面对象</returns> clone: function () { return new THREE.Plane().copy( this ); //返回二维平面对象 } };
商域无疆 (http://blog.csdn.net/omni360/)
本文遵循“署名-非商业用途-保持一致”创作公用协议
转载请保留此句:商域无疆 - 本博客专注于 敏捷开发及移动和物联设备研究:数据可视化、GOLANG、Html5、WEBGL、THREE.JS,否则,出自本博客的文章拒绝转载或再转载,谢谢合作。
以下代码是THREE.JS 源码文件中Math/Plane.js文件的注释.
更多更新在 : https://github.com/omni360/three.js.sourcecode/blob/master/Three.js
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。