Spark parquet merge metadata问题

 在spark sql 1.2.x当中存在一个问题:

当我们尝试在一个查询中访问多个parquet文件时,如果这些parquet文件中的字段名和类型是完全一致的、只是字段的顺序不一样,例如一个文件中是name string, id int,另一个文件是id int, name string时,查询会报错,抛出metadata merge的异常。

在1.3当中,这个问题其实已经解决。那么在1.2.x中解决的办法是:

在spark源码的sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableOperations.scala文件中,找到override def getSplits(configuration: Configuration, footers: JList[Footer]): JList[ParquetInputSplit]这个方法,在如下这段代码之前:

if (globalMetaData == null) {
     val splits = mutable.ArrayBuffer.empty[ParquetInputSplit]
     return splits
    }

将val globalMetaData改成 var globalMetaData

在上面这段代码之后加上如下几行:

val startTime = System.currentTimeMillis();
val metadata = configuration.get(RowWriteSupport.SPARK_ROW_SCHEMA)
val mergedMetadata = globalMetaData.getKeyValueMetaData.updated(RowReadSupport.SPARK_METADATA_KEY, setAsJavaSet(Set(metadata)))
globalMetaData = new GlobalMetaData(globalMetaData.getSchema, mergedMetadata, globalMetaData.getCreatedBy)
val endTime = System.currentTimeMillis();
logInfo("\n*** updated globalMetadata in " + (endTime - startTime) + " ms. ***\n");

其中第2-4行是必须的,这三行是从spark1.3里面摘出来的。其他三行只是想打个日志,看看这段代码放的执行时间。

然后就是编译源码了:

mvn -Phadoop-2.4 -Dhadoop.version=2.4.0 -Phive -Phive-thriftserver -DskipTests clean package
具体参考http://spark.apache.org/docs/1.2.1/building-spark.html

我在一台服务器上测试了编译之后的spark,问题解决了,执行很顺利,性能没有任何影响。读取600个parquet文件,加上的几行代码只用了1ms左右。

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。