Spark Streaming+Flume对接实验

文章来自: http://lxw1234.com/?p=217

?

软件环境:

flume-ng-core-1.4.0-cdh5.0.0

spark-1.2.0-bin-hadoop2.3

?

流程说明:

  • Spark Streaming: 使用spark-streaming-flume_2.10-1.2.0插件,启动一个avro source,用来接收数据,并做相应的处理;
  • Flume agent:source监控本地文件系统的一个目录,当文件发生变化时候,由avro sink发送至Spark Streaming的监听端口

Flume配置:

flume-lxw-conf.properties

?

#-->设置sources名称
agent_lxw.sources = sources1
#--> 设置channel名称
agent_lxw.channels = fileChannel
#--> 设置sink 名称
agent_lxw.sinks = sink1
 
# source 配置
## 一个自定义的Source,实现类似tail -f 的功能,比exec source更可靠
agent_lxw.sources.sources1.type = org.apache.flume.source.taildirectory.DirectoryTailSource
agent_lxw.sources.sources1.dirs = lxwlog
## 监控的目录
agent_lxw.sources.sources1.dirs.lxwlog.path = file:///tmp/lxw-source
#监控文件的正则规则,此正则用java的正则
agent_lxw.sources.sources1.dirs.lxwlog.file-pattern = ^lxw_.*log$
agent_lxw.sources.sources1.first-line-pattern = ^(.*)$
agent_lxw.sources.sources1.channels = fileChannel
 
 
# sink 1 配置 将数据发送至slave004.lxw1234.com的44444端口
agent_lxw.sinks.sink1.type = avro
agent_lxw.sinks.sink1.hostname = slave004.lxw1234.com
agent_lxw.sinks.sink1.port = 44444
agent_lxw.sinks.sink1.channel = fileChannel
agent_lxw.sinks.sink1.batch-size = 500
agent_lxw.sinks.sink1.connect-timeout = 40000
agent_lxw.sinks.sink1.request-timeout = 40000
 
agent_lxw.channels.fileChannel.type = file
#-->检测点文件所存储的目录
agent_lxw.channels.fileChannel.checkpointDir = /tmp/flume/checkpoint/site
#-->数据存储所在的目录设置
agent_lxw.channels.fileChannel.dataDirs = /tmp/flume/data/site
#-->隧道的最大容量
agent_lxw.channels.fileChannel.capacity = 10000
#-->事务容量的最大值设置
agent_lxw.channels.fileChannel.transactionCapacity = 100

?

?

Spark Streaming程序:

Spark_Flume.scala

?

?

package com.lxw.test
 
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.flume.FlumeUtils
 
 
object Spark_Flume {
def main (args : Array[String]) {
if(args.length < 2) {
println("Usage: Spark_Flume <hostname> <port>")
System.exit(1)
}
val hostname = args(0)
val port = Integer.parseInt(args(1))
val sc = new SparkContext(new SparkConf().setAppName("Spark_Flume"))
val ssc = new StreamingContext(sc, Seconds(10))
val flumeStream = FlumeUtils.createStream(ssc, hostname, port,StorageLevel.MEMORY_AND_DISK)
flumeStream.map(e => "Event:header:" + e.event.get(0).toString + "body: " + new String(e.event.getBody.array)).print()
ssc.start()
ssc.awaitTermination()
}
}

?

?

启动:

  • 先启动Spark Streaming程序:

?

./spark-submit --name "spark-flume" --master spark://192.168.1.130:7077 --executor-memory 1G --class com.lxw.test.Spark_Flume /home/liuxiaowen/spark-flume.jar slave004.lxw1234.com 44444

?

?

  • 再启动Flume agent:
flume-ng agent -n agent_lxw --conf . -f flume-lxw-conf.properties

?

效果示例:

注意事项:

参见原文:? http://lxw1234.com/?p=217

?

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。