Go语言”奇怪用法“实践总结

2013-11-23 wcdj

0 摘要


本文通过对A Tour of Go的实践,总结Go语言的基础用法。

 

1 Go语言”奇怪用法“有哪些?


1,go的变量声明顺序是:”先写变量名,再写类型名“,此与C/C++的语法孰优孰劣,可见下文解释:
http://blog.golang.org/gos-declaration-syntax

2,go是通过package来组织的(与python类似),只有package名为main的包可以包含main函数,一个可执行程序有且仅有一个main包,通过import关键字来导入其他非main包。

3,可见性规则。go语言中,使用大小写来决定该常量、变量、类型、接口、结构或函数是否可以被外部包含调用。根据约定,函数名首字母小写即为private,函数名首字母大写即为public。

4,go内置关键字(25个均为小写)。

5,函数不用先声明,即可使用。

6,在函数内部可以通过 := 隐士定义变量。(函数外必须显示使用var定义变量)

7,go程序使用UTF-8编码的纯Unicode文本编写。

8,使用big.Int的陷阱:
http://stackoverflow.com/questions/11270547/go-big-int-factorial-with-recursion

9,从技术层面讲,go语言的语句是以分号分隔的,但这些是由编译器自动添加的,不用手动输入,除非需要在同一行中写入多个语句。没有分号及只需少量的逗号和圆括号,使得go语言的程序更容易阅读。

10,go语言只有一个循环结构——for循环。

11,go里的自增运算符只有——“后++”

12,go语言中的slice用法类似python中数组,关于slice的详细用法可见:http://blog.golang.org/go-slices-usage-and-internals

13,函数也是一个值,使用匿名函数返回一个值。

14,函数闭包的使用,闭包是一个匿名函数值,会引用到其外部的变量。



2 代码实践


/* gerryyang
 * 2013-11-23
 */

package main

import (
    "fmt"
    "math"
    "math/big"
    "math/cmplx"
    "math/rand"
    "net/http"
    "os"
    "runtime"
    "time"
)

// Outside a function, every construct begins with a keyword (var, func, and so on) and the := construct is not available
// The var statement declares a list of variables; as in function argument lists, the type is last
var x, y, z int
var c, python, java bool

// A var declaration can include initializers, one per variable
var x1, y1, z1 int = 1, 2, 3

// If an initializer is present, the type can be omitted; the variable will take the type of the initializer
var c1, python1, java1 = true, false, "no!"

// basic types
// bool
// string
// int int8 int16 int32 int64
// uint uint8 uint16 uint32 uint64 uintptr
// byte (alias for uint8)
// rune (alias for int32, represents a Unicode code point)
// float32 float64
// complex64 complex128
var (
    ToBe    bool       = false
    MaxInt  uint64     = 1<<64 - 1
    complex complex128 = cmplx.Sqrt(-5 + 12i)
)

// Constants are declared like variables, but with the const keyword
const Pi = 3.14

// Constants can be character, string, boolean, or numeric values
const World = "世界"

// Numeric Constants
const (
    Big   = 1 << 100
    Small = Big >> 99 // 2
)

type Vertex struct {
    X int
    Y int
}

type Vertex2 struct {
    Lat, Long float64
}

var m map[string]Vertex2

// Map literals are like struct literals, but the keys are required
var m2 = map[string]Vertex2{
    "gerryyang": Vertex2{
        100, 200,
    },
    "wcdj": Vertex2{
        -300, 500,
    },
}

// If the top-level type is just a type name, you can omit it from the elements of the literal
var m3 = map[string]Vertex2{
    "math":     {20, 40},
    "computer": {30, 50},
}

type Vertex3 struct {
    X, Y float64
}

type MyFloat float64

type Abser interface {
    Abs() float64
}

////////////////////////////////////////////////////////

func main() {
    fmt.Println("Hello Golang, I'm gerryyang")
    fmt.Println("The time is", time.Now())

    // To see a different number, seed the number generator; see rand.Seed
    fmt.Println("My favorite number is", rand.Intn(7))
    fmt.Printf("Now you have %g problesms\n", math.Nextafter(2, 3))
    // In Go, a name is exported if it begins with a capital letter
    fmt.Println(math.Pi)

    // Notice that the type comes after the variable name
    fmt.Println(add(42, 13))
    fmt.Println(add2(42, 13))

    // multiple results
    a, b := swap("gerry", "yang")
    fmt.Println(a, b)

    // named return
    fmt.Println(split(17))
    fmt.Println(split2(17))

    // var used
    fmt.Println(x, y, z, c, python, java)
    fmt.Println(x1, y1, z1, c1, python1, java1)

    // Inside a function, the := short assignment statement can be used in place of a var declaration with implicit type
    var x2, y2, z2 int = 1, 2, 3
    c2, python2, java2 := true, false, "yes!"
    fmt.Println(x2, y2, z2, c2, python2, java2)

    // basic types
    const f = "%T(%v)\n"
    fmt.Printf(f, ToBe, ToBe)
    fmt.Printf(f, MaxInt, MaxInt)
    fmt.Printf(f, complex, complex)

    // Constants cannot be declared using the := syntax
    const World2 = "和平"
    const Truth = true
    fmt.Println(Pi)
    fmt.Println("你好", World)
    fmt.Println("世界", World2)
    fmt.Println("Go rules?", Truth)

    // Numeric Constants
    fmt.Println(needInt(Small))
    ////fmt.Println(needInt(Big))// error, constant 1267650600228229401496703205376 overflows int
    ////fmt.Println(needInt64(Big)) // error, same as above
    ////fmt.Println(needBigInt(big.NewInt(Big)))// error, 使用big.Int貌似入参最大类型只支持int64
    fmt.Println(needFloat(Small))
    fmt.Println(needFloat(Big))

    // Go has only one looping construct, the for loop
    // The basic for loop looks as it does in C or Java, except that the ( ) are gone (they are not even optional) and the { } are required
    sum := 0
    for i := 0; i < 10; i++ {
        sum += i
    }
    fmt.Println(sum)

    // As in C or Java, you can leave the pre and post statements empty
    // At that point you can drop the semicolons: C's while is spelled for in Go
    sum1 := 1
    for sum1 < 1000 {
        sum1 += sum1
    }
    fmt.Println(sum1)

    // If you omit the loop condition it loops forever, so an infinite loop is compactly expressed
    ivar := 1
    for {
        if ivar++; ivar > 1000 {
            fmt.Println("leave out an infinite loop")
            break
        }
    }

    // The if statement looks as it does in C or Java, except that the ( ) are gone and the { } are required
    fmt.Println(sqrt(2), sqrt(-4))

    // Like for, the if statement can start with a short statement to execute before the condition
    fmt.Println(pow(3, 2, 10), pow(3, 3, 20))

    // If and else
    fmt.Println(pow2(3, 2, 10), pow2(3, 3, 20))

    ////////////////////////////////////////////////////////////

    // A struct is a collection of fields
    fmt.Println(Vertex{1, 2})

    // Struct fields are accessed using a dot
    v := Vertex{1, 2}
    v.X = 4
    fmt.Println(v)

    // Go has pointers, but no pointer arithmetic
    // Struct fields can be accessed through a struct pointer. The indirection through the pointer is transparent
    p := Vertex{1, 2}
    q := &p
    q.X = 1e9
    fmt.Println(p)

    // struct literals
    // A struct literal denotes a newly allocated struct value by listing the values of its fields
    p = Vertex{1, 2}  // has type Vertex
    q = &Vertex{1, 2} // has type * Vertex
    r := Vertex{X: 1} // Y:0 is implicit
    s := Vertex{}     // X:0 and Y:0
    fmt.Println(p, q, r, s)

    // The expression new(T) allocates a zeroed T value and returns a pointer to it
    // var t *T = new(T) or t := new(T)
    pv := new(Vertex)
    fmt.Println(pv)
    pv.X, pv.Y = 11, 9
    fmt.Println(pv)

    // A slice points to an array of values and also includes a length
    // []T is a slice with elements of type T
    as := []int{2, 3, 5, 7, 11, 13}
    fmt.Println("as ==", as)
    for i := 0; i < len(as); i++ {
        fmt.Printf("as[%d] == %d\n", i, as[i])
    }

    // Slices can be re-sliced, creating a new slice value that points to the same array
    // The expression: s[lo:hi]
    // evaluates to a slice of the elements from lo through hi-1, inclusive
    fmt.Println("as[1:4] ==", as[1:4])
    // missing low index implies 0
    fmt.Println("as[:3] ==", as[:3])
    // missing high index implies len(s)
    fmt.Println("as[4:] ==", as[4:])

    // Slices are created with the make function. It works by allocating a zeroed array and returning a slice that refers to that array
    // a := make([]int, 5), note, len(a) = 5
    // To specify a capacity, pass a third argument to make
    // b := make([]int, 0 , 5), note, len(b) = 0, cap(b) = 5
    // b = b[:cap(b)], note, len(b) = 5, cap(b) = 5
    // b = b[1:], note, len(b) = 4, cap(b) = 4
    s1 := make([]int, 5)
    printSlice("s1", s1)
    s2 := make([]int, 0, 5)
    printSlice("s2", s2)
    s3 := s2[:2]
    printSlice("s3", s3)
    s4 := s3[2:5]
    printSlice("s4", s4)

    // The zero value of a slice is nil
    // A nil slice has a length and capacity of 0
    var s5 []int
    fmt.Println(s5, len(s5), cap(s5))
    if s5 == nil {
        fmt.Println("slice is nil")
    }

    // The range form of the for loop iterates over a slice or map
    var s6 = []int{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}
    for i, v := range s6 {
        fmt.Printf("2**%d = %d\n", i, v)
    }

    // If you only want the index, drop the ", value" entirely
    for i := range s6 {
        s6[i] = 1 << uint(i)
    }
    // You can skip the index or value by assigning to _
    for _, value := range s6 {
        fmt.Printf("%d\n", value)
    }

    // A map maps keys to values
    // Maps must be created with make (not new) before use; the nil map is empty and cannot be assigned to
    m = make(map[string]Vertex2)
    m["Bell Labs"] = Vertex2{
        40.68433, -74.39967,
    }
    fmt.Println(m["Bell Labs"])

    // Map literals are like struct literals, but the keys are required
    fmt.Println(m2)

    // If the top-level type is just a type name, you can omit it from the elements of the literal
    fmt.Println(m3)

    // map
    // insert, update, retrieve, delete, test
    m4 := make(map[string]int)
    m4["date"] = 20131129
    fmt.Println("The value:", m4["date"])
    m4["date"] = m4["date"] + 1
    fmt.Println("The value:", m4["date"])
    date, ok := m4["date"]
    fmt.Println("The value:", date, "Present?", ok)

    delete(m4, "date")
    fmt.Println("The value:", m4["date"])
    date2, ok := m4["date"]
    fmt.Println("The value:", date2, "Present?", ok)

    // Function values
    // Functions are values too
    hypot := func(x, y float64) float64 {
        return math.Sqrt(x*x + y*y)
    }
    fmt.Println(hypot(3, 4))

    // Function closures
    // For example, the adder function returns a closure. Each closure is bound to its own sum variable
    pos, neg := adder(), adder()
    for i := 0; i < 10; i++ {
        fmt.Println(pos(i), neg(-2*i))
    }

    // fibonacci
    fib := fibonacci()
    for i := 0; i < 10; i++ {
        fmt.Println(fib())
    }

    // switch
    // A case body breaks automatically, unless it ends with a fallthrough statement
    switch os := runtime.GOOS; os {
    case "darwin":
        fmt.Println("OS X")
    case "linux":
        fmt.Println("Linux")
    default:
        // freebsd, openbsd
        // plan9, windows...
        fmt.Printf("%s", os)
    }

    // Switch cases evaluate cases from top to bottom, stopping when a case succeeds
    // Note: Time in the Go playground always appears to start at 2009-11-10 23:00:00 UTC
    fmt.Println("When's Saturday?")
    today := time.Now().Weekday()
    switch time.Saturday {
    case today + 0:
        fmt.Println("Today")
    case today + 1:
        fmt.Println("Tomorrow")
    case today + 2:
        fmt.Println("In two days")
    case today + 3:
        fmt.Println("In three days")
    default:
        fmt.Println("Too far away")
    }

    // Switch without a condition is the same as switch true
    // This construct can be a clean way to write long if-then-else chains
    t_now := time.Now()
    switch {
    case t_now.Hour() < 12:
        fmt.Println("Good morning!")
    case t_now.Hour() < 17:
        fmt.Println("Good afternoon")
    default:
        fmt.Println("Good evening")
    }

    // Go does not have classes. However, you can define methods on struct types
    v3 := &Vertex3{3, 4}
    fmt.Println(v3.Abs())

    // In fact, you can define a method on any type you define in your package, not just structs
    // You cannot define a method on a type from another package, or on a basic type
    f1 := MyFloat(-math.Sqrt2)
    fmt.Println(f1.Abs())

    // Methods with pointer receivers
    // Methods can be associated with a named type or a pointer to a named type
    // We just saw two Abs methods. One on the *Vertex pointer type and the other on the MyFloat value type
    // There are two reasons to use a pointer receiver. First, to avoid copying the value on each method call (more efficient if the value type is a large struct). Second, so that the method can modify the value that its receiver points to
    v3 = &Vertex3{3, 4}
    v3.Scale(5)
    fmt.Println(v3, v3.Abs())

    // An interface type is defined by a set of methods
    // A value of interface type can hold any value that implements those methods
    var a_interface Abser
    v4 := Vertex3{3, 4}
    a_interface = f1  // a MyFloat implements Abser
    a_interface = &v4 // a *Vertex3 implements Abser
    //a_interface = v4  // a Vertex3, does Not, error!
    fmt.Println(a_interface.Abs())

    // Interfaces are satisfied implicitly
    var w Writer
    // os.Stdout implements Writer
    w = os.Stdout
    fmt.Fprintf(w, "hello, writer\n")

    // An error is anything that can describe itself as an error string. The idea is captured by the predefined, built-in interface type, error, with its single method, Error, returning a string: type error interface { Error() string }
    if err := run(); err != nil {
        fmt.Println(err)
    }

    // Web servers
    //var h Hello
    //http.ListenAndServe("localhost:4000", h)

}

/////////////////////////////////////////////

// func can be used before declare
func add(x int, y int) int {
    return x + y
}

// When two or more consecutive named function parameters share a type, you can omit the type from all but the last
func add2(x, y int) int {
    return x + y
}

// multiple results, a function can return any number of results
func swap(x, y string) (string, string) {
    return y, x
}

// In Go, functions can return multiple "result parameters", not just a single value. They can be named and act just like variables
func split(sum int) (x, y int) {
    x = sum * 4 / 9
    y = sum - x
    return y, x
}

// In Go, functions can return multiple "result parameters", not just a single value. They can be named and act just like variables
func split2(sum int) (x, y int) {
    x = sum * 4 / 9
    y = sum - x

    // If the result parameters are named, a return statement without arguments returns the current values of the results
    return
}

func needInt(x int) int       { return x*10 + 1 }
func needInt64(x int64) int64 { return x*10 + 1 }
func needBigInt(x *big.Int) (result *big.Int) {
    result = new(big.Int)
    result.Set(x)
    result.Mul(result, big.NewInt(10))
    return
}
func needFloat(x float64) float64 {
    return x * 0.1
}

func sqrt(x float64) string {
    if x < 0 {
        return sqrt(-x) + "i"
    }
    return fmt.Sprint(math.Sqrt(x))
}

// Variables declared by the statement are only in scope until the end of the if
func pow(x, n, lim float64) float64 {
    if v := math.Pow(x, n); v < lim {
        return v
    }
    return lim
}

// Variables declared inside an if short statement are also available inside any of the else blocks
func pow2(x, n, lim float64) float64 {
    if v := math.Pow(x, n); v < lim {
        return v
    } else {
        fmt.Printf("%g >= %g\n", v, lim)
    }
    // can't use v here, though
    return lim
}

func printSlice(s string, x []int) {
    fmt.Printf("%s len = %d cap = %d %v\n", s, len(x), cap(x), x)
}

// Go functions may be closures. A closure is a function value that references variables from outside its body. The function may access and assign to the referenced variables; in this sense the function is "bound" to the variables
func adder() func(int) int {
    sum := 0
    return func(x int) int {
        sum += x
        return sum
    }
}

// fibonacci is a function that returns
// a function that returns an int.
func fibonacci() func() int {
    p := 0
    q := 1
    s := 0
    return func() int {
        s = p + q
        p = q
        q = s
        return s
    }
}

// The method receiver appears in its own argument list between the func keyword and the method name
func (v *Vertex3) Abs() float64 {
    return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func (f MyFloat) Abs() float64 {
    if f < 0 {
        fmt.Println("f < 0 here")
        return float64(-f)
    }
    return float64(f)
}

// Methods with pointer receivers
func (v *Vertex3) Scale(f float64) {
    v.X = v.X * f
    v.Y = v.Y * f
}

// Interfaces are satisfied implicitly
type Reader interface {
    Read(b []byte) (n int, err error)
}
type Writer interface {
    Write(b []byte) (n int, err error)
}
type ReadWriter interface {
    Reader
    Writer
}

// error control
type MyError struct {
    When time.Time
    What string
}

func (e *MyError) Error() string {
    return fmt.Sprintf("at %v, %s", e.When, e.What)
}
func run() error {
    return &MyError{
        time.Now(),
        "it didn't work",
    }
}

// Web servers
type Hello struct{}

func (h Hello) ServeHTTP(
    w http.ResponseWriter,
    r *http.Request) {
    fmt.Fprint(w, "gerryyang")
}


/*
output:

Hello Golang, I'm gerryyang
The time is 2013-12-04 22:52:01.336562598 +0800 HKT
My favorite number is 6
Now you have 2.0000000000000004 problesms
3.141592653589793
55
55
yang gerry
10 7
7 10
0 0 0 false false false
1 2 3 true false no!
1 2 3 true false yes!
bool(false)
uint64(18446744073709551615)
complex128((2+3i))
3.14
你好 世界
世界 和平
Go rules? true
21
0.2
1.2676506002282295e+29
45
1024
leave out an infinite loop
1.4142135623730951 2i
9 20
27 >= 20
9 20
{1 2}
{4 2}
{1000000000 2}
{1 2} &{1 2} {1 0} {0 0}
&{0 0}
&{11 9}
as == [2 3 5 7 11 13]
as[0] == 2
as[1] == 3
as[2] == 5
as[3] == 7
as[4] == 11
as[5] == 13
as[1:4] == [3 5 7]
as[:3] == [2 3 5]
as[4:] == [11 13]
s1 len = 5 cap = 5 [0 0 0 0 0]
s2 len = 0 cap = 5 []
s3 len = 2 cap = 5 [0 0]
s4 len = 3 cap = 3 [0 0 0]
[] 0 0
slice is nil
2**0 = 1
2**1 = 2
2**2 = 4
2**3 = 8
2**4 = 16
2**5 = 32
2**6 = 64
2**7 = 128
2**8 = 256
2**9 = 512
2**10 = 1024
1
2
4
8
16
32
64
128
256
512
1024
{40.68433 -74.39967}
map[gerryyang:{100 200} wcdj:{-300 500}]
map[math:{20 40} computer:{30 50}]
The value: 20131129
The value: 20131130
The value: 20131130 Present? true
The value: 0
The value: 0 Present? false
5
0 0
1 -2
3 -6
6 -12
10 -20
15 -30
21 -42
28 -56
36 -72
45 -90
1
2
3
5
8
13
21
34
55
89
OS X
When's Saturday?
In three days
Good evening
5
f < 0 here
1.4142135623730951
&{15 20} 25
5
hello, writer
at 2013-12-04 22:52:01.337206342 +0800 HKT, it didn't work



*/


本文来自:CSDN博客

感谢作者:delphiwcdj

查看原文:Go语言”奇怪用法“实践总结

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。