Go 基础语法

转自:/topics/548

例子Packages.go:

package main

import (
    "fmt"
    "math/rand"
)

func add(x int, y int) int {
    return x + y
}

func main() {
    fmt.Println("My favorite number is", rand.Intn(10))
    fmt.Println(add(42, 13))
}

包:每个 Go 程序都是由包(package)组成的,程序运行的入口是包 main

导入:这个代码用圆括号组合了导入,这是“打包”导入语句。同样可以编写多个导入语句,例如:

import "fmt"
import "math"

这个程序使用并导入了包 "fmt" 和 "math/rand"。包名与导入路径的最后一个目录一致。例如,如果你导入了"math/rand",那么你就可以在程序里面直接写rand.Intn(10),但如果你导入的是"math",那么你就得写math.rand.Intn(10)。

函数:函数可以没有参数或接受多个参数。在这个例子中,add 接受两个 int 类型的参数,注意类型在变量名之后。有没有觉得很奇怪呢,下面就详细解释一下go这样做的原因。 看一个c的例子:

int (*fp)(int (*ff)(int x, int y), int b)

我相信学过c的同学为了看懂这个都下了不少功夫吧,有没有感觉到痛苦或者说痛苦之后的那一点点优越感。 什么?你还能看懂?那么再来一个:

int (*(*fp)(int (*)(int, int), int))(int, int);

用go语言的话这两个例子的定义如下:

f func(func(int,int) int, int) int
f func(func(int,int) int, int) func(int, int) int

是不是清晰多了,原来f返回的是一个函数啊。。。

函数参数: 当两个或多个连续的函数命名参数是同一类型,则除了最后一个类型之外,其他都可以省略,比如func add(x int, y int) int可以写为func add(x, y int) int 函数返回值:

函数可以返回任意数量的返回值,比如func swap(x, y string) (string, string)。 并且,函数的返回值还可以被命名,并且像变量那样使用,比如

func split(sum int) (x, y int) {
    x = sum * 4 / 9
    y = sum - x
    return
}

没有参数的 return 语句返回结果的当前值。 变量: var 语句定义了一个变量的列表;跟函数的参数列表一样,类型在后面,可以定义在包或函数级别。比如:

package main
import "fmt"
var c, python, java bool
func main() {
    var i int
    fmt.Println(i, c, python, java)
}

变量的初始化: 变量定义可以包含初始值,每个变量对应一个。如果初始化是使用表达式,则可以省略类型;变量从初始值中获得类型。比如:var i, j int = 1, 2或者var c, python, java = true, false, "no!" 短声明变量:在函数中,:= 简洁赋值语句在明确类型的地方,可以用于替代 var 定义。 函数外的每个语句都必须以关键字开始(varfunc、等等),:= 结构不能使用在函数外。比如:

package main
import "fmt"
func main() {
    var i, j int = 1, 2
    k := 3
    c, python, java := true, false, "no!"
    fmt.Println(i, j, k, c, python, java)
}

Go的基本类型:这里先简单列一下,后面再具体讲

bool
string
int  int8  int16  int32  int64
uint uint8 uint16 uint32 uint64 uintptr
byte // uint8 的别名
rune // int32 的别名// 代表一个Unicode码
float32 float64
complex64 complex128

零值:变量在定义时没有明确的初始化时会赋值为零值。数值类型为 0,布尔类型为 false,字符串为 ""。 类型转换:Go 的在不同类型之间的项目赋值时需要显式转换。表达式 T(v) 将值 v 转换为类型 T。比如:

var i int = 42
var f float64 = float64(i)
var u uint = uint(f)

或者,更加简单的形式:

i := 42
f := float64(i)
u := uint(f)

类型推导:在定义一个变量但不指定其类型时(使用没有类型的 var 或 := 语句), 变量的类型由右值推导得出。 var i int j := i // j 也是一个 int 但是当右边包含了未指名类型的数字常量时,新的变量就可能是 int 、 float64 或 complex128。 这取决于常量的精度:

i := 42           // int
f := 3.142        // float64
g := 0.867 + 0.5i // complex128

常量:常量的定义与变量类似,只不过使用 const 关键字,常量可以是字符、字符串、布尔或数字类型的值,常量不能使用 := 语法定义。 流程控制语句 for循环:Go 只有一种循环结构for循环。基本的 for 循环除了没有了 ( ) 之外(,看起来跟 C 或者 Java 中做的一样,而 { } 是必须的。比如:

package main
import "fmt"
func main() {
    sum := 0
    for i := 0; i < 10; i++ {
        sum += i
    }
    fmt.Println(sum)
}

死循环:如果省略了循环条件,循环就不会结束,因此可以用更简洁地形式表达死循环。

package main
func main() {
    for {
    }
}

If语句:if 语句除了没有了 ( ) 之外,看起来跟 C 或者 Java 中的一样,而 { } 是必须的。

func sqrt(x float64) string {
    if x < 0 {
        return sqrt(-x) + "i"
    }
    return fmt.Sprint(math.Sqrt(x))
}

可以在if条件之前执行一个简单的语句,由这个语句定义的变量的作用域仅在 if 范围之内,比如:

func pow(x, n, lim float64) float64 {
    if v := math.Pow(x, n); v < lim {
        return v
    }
    return lim
}

在 if 的便捷语句定义的变量同样可以在任何对应的 else 块中使用,比如:

func pow(x, n, lim float64) float64 {
    if v := math.Pow(x, n); v < lim {
        return v
    } else {
        fmt.Printf("%g >= %g\n", v, lim)
    }
    // 这里开始就不能使用 v 了
    return lim
}

Switch语句:switch 的条件从上到下的执行,当匹配成功的时候停止,除非以 fallthrough 语句结束,否则分支会自动终止。比如:

switch i {
  case 0:
  case f():
}

当 i==0 时不会调用 f。没有条件的 switch 同 switch true 一样,这一构造使得可以用更清晰的形式来编写长的 if-then-else 链。

func main() {
    t := time.Now()
    switch {
    case t.Hour() < 12:
        fmt.Println("Good morning!")
    case t.Hour() < 17:
        fmt.Println("Good afternoon.")
    default:
        fmt.Println("Good evening.")
    }
}

Defer语句:defer 语句会延迟函数的执行直到上层函数返回,延迟调用的参数会立刻生成,但是在上层函数返回前函数都不会被调用。比如打印hello world:

func main() {
    defer fmt.Println("world")
    fmt.Println("hello")
}

延迟的函数调用被压入一个栈中。当函数返回时, 会按照后进先出的顺序调用被延迟的函数调用。

func main() {
    fmt.Println("counting")
    for i := 0; i < 10; i++ {
        defer fmt.Println(i)
    }
    fmt.Println("done")
}

输出

counting
done
9
8
7
6
5
4
3
2
1
0

这个功能用来做清理工作非常清晰且强大,可以用结构化编程的思路处理面向对象编程中类似析构函数的功能。举一个实际点的例子:

func CopyFile(dstName, srcName string) (written int64, err error) {
    src, err := os.Open(srcName)
    if err != nil {
        return
    }
    defer src.Close()

    dst, err := os.Create(dstName)
    if err != nil {
        return
    }
    defer dst.Close()

    return io.Copy(dst, src)
}

复杂类型 指针:Go 具有指针。 指针保存了变量的内存地址,类型 T 是指向类型 T 的值的指针。其零值是 nil,& 符号会生成一个指向其作用对象的指针, 符号表示指针指向的底层的值。

var p *int
i := 42
p = &i
fmt.Println(*p) // 通过指针 p 读取 i
*p = 21         // 通过指针 p 设置 i

与 C 不同,Go 没有指针运算。 结构体:一个结构体(struct)就是一个字段的集合,跟C类似,结构体字段使用点号来访问,结构体字段可以通过结构体指针来访问。

type Vertex struct {
    X int
    Y int
}

func main() {
    fmt.Println(Vertex{1, 2})
    v.X = 4
    fmt.Println(v.X)
    p := &v
    p.X = 1e9
}

结构体文法:结构体文法表示通过结构体字段的值作为列表来新分配一个结构体。使用 Name: 语法可以仅列出部分字段。(字段名的顺序无关。)特殊的前缀 & 返回一个指向结构体的指针。

type Vertex struct {
    X, Y int
}

var (
    v1 = Vertex{1, 2}  // 类型为 Vertex
    v2 = Vertex{X: 1}  // Y:0 被省略
    v3 = Vertex{}      // X:0 和 Y:0
    p  = &Vertex{1, 2} // 类型为 *Vertex
)

数组:类型 [n]T 是一个有 n 个类型为 T 的值的数组,数组的长度是其类型的一部分,因此数组不能改变大小。 Slice:一个 slice 会指向一个序列的值,并且包含了长度信息,[]T 是一个元素类型为 T 的 slice。slice 可以重新切片,创建一个新的 slice 值指向相同的数组。s[lo:hi] 表示从 lo 到 hi-1 的 slice 元素,含两端,因此s[lo:lo] 是空的。下标从0开始。

package main
import "fmt"

func main() {
    p := []int{2, 3, 5, 7, 11, 13}
    fmt.Println("p ==", p)
    fmt.Println("p[1:4] ==", p[1:4])

    // 省略下标代表从 0 开始
    fmt.Println("p[:3] ==", p[:3])

    // 省略上标代表到 len(s) 结束
    fmt.Println("p[4:] ==", p[4:])
}

构造slice:slice 由函数 make 创建。这会分配一个零长度的数组并且返回一个 slice 指向这个数组,比如:

a := make([]int, 5)  // len(a)=5

为了指定容量,可传递第三个参数到 make

b := make([]int, 0, 5) // len(b)=0, cap(b)=5
b = b[:cap(b)] // len(b)=5, cap(b)=5
b = b[1:]      // len(b)=4, cap(b)=4

slice 的零值是 nil,一个 nil 的 slice 的长度和容量是 0。 向slice添加元素: func append(s []T, vs ...T) []T append 的第一个参数 s 是一个类型为 T 的数组,append 的结果是一个包含原 slice 所有元素加上新添加的元素的 slice,如果 s 的底层数组太小,而不能容纳所有值时,会分配一个更大的数组,返回的 slice 会指向这个新分配的数组。 range: for 循环的 range 格式可以对 slice 或者 map 进行迭代循环。

package main
import "fmt"

var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}
func main() {
    for i, v := range pow {
        fmt.Printf("2**%d = %d\n", i, v)
    }
}

可以通过赋值给 _ 来忽略序号和值,如果只需要索引值,去掉“, value”的部分即可。

func main() {
    pow := make([]int, 10)
    for i := range pow {
        pow[i] = 1 << uint(i)
    }
    for _, value := range pow {
        fmt.Printf("%d\n", value)
    }
}

map:map 在使用之前必须用 make 而不是 new 来创建;值为 nil 的 map 是空的,并且不能赋值。

type Vertex struct {
    Lat, Long float64
}

var m map[string]Vertex

func main() {
    m = make(map[string]Vertex)
    m["Bell Labs"] = Vertex{
        40.68433, -74.39967,
    }
    fmt.Println(m["Bell Labs"])
}

map 的文法跟结构体文法相似,不过必须有键名。

var m = map[string]Vertex{
    "Bell Labs": Vertex{
        40.68433, -74.39967,
    },
    "Google": Vertex{
        37.42202, -122.08408,
    },
}

如果顶级的类型只有类型名的话,可以在文法的元素中省略键名。

var m = map[string]Vertex{
    "Bell Labs": {40.68433, -74.39967},
    "Google":    {37.42202, -122.08408},
}

修改 map: 在 map m 中插入或修改一个元素:m[key] = elem 获得元素:elem = m[key] 删除元素:delete(m, key) 通过双赋值检测某个键存在:elem, ok = m[key] 如果 key 在 m 中,ok 为 true 。否则, ok 为 false,并且 elem 是 map 的元素类型的零值,同样的,当从 map 中读取某个不存在的键时,结果是 map 的元素类型的零值。

函数值:函数也是值。

package main
import (
    "fmt"
    "math"
)

func main() {
    hypot := func(x, y float64) float64 {
        return math.Sqrt(x*x + y*y)
    }
    fmt.Println(hypot(3, 4))
}

函数的闭包:这个意思简单点就是以函数作为返回值。 Go 函数可以是闭包的。闭包是一个函数值,它来自函数体的外部的变量引用。 函数可以对这个引用值进行访问和赋值;换句话说这个函数被“绑定”在这个变量上。

package main

import "fmt"

func adder() func(int) int {
    sum := 0
    return func(x int) int {
        sum += x
        return sum
    }
}

func main() {
    pos, neg := adder(), adder()
    for i := 0; i < 10; i++ {
        fmt.Println(
            pos(i),
            neg(-2*i),
        )
    }
}

 

本文来自:博客园

感谢作者:sevenyuan

查看原文:Go 基础语法

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。