看完这个你还不理解右值引用和移动构造 你就可以来咬我(上)
共分三篇,这是第一篇。另外两篇,看完这个你还不理解右值引用和移动构造 你就可以来咬我(中),看完这个你还不理解右值引用和移动构造 你就可以来咬我(下)。
C++ 右值引用 & 新特性
C++ 11
中引入的一个非常重要的概念就是右值引用。理解右值引用是学习“移动语义”(move
semantics)
的基础。而要理解右值引用,就必须先区分左值与右值。
对左值和右值的一个最常见的误解是:等号左边的就是左值,等号右边的就是右值。左值和右值都是针对表达式而言的,左值是指表达式结束后依然存在的持久对象,右值是指表达式结束时就不再存在的临时对象。一个区分左值与右值的便捷方法是:看能不能对表达式取地址,如果能,则为左值,否则为右值。下面给出一些例子来进行说明。
int a = 10;
int b = 20;
int *pFlag = &a;
vector<int> vctTemp;
vctTemp.push_back(1);
string str1 = "hello ";
string str2 = "world";
const int &m = 1;
请问,a,b, a+b, a++, ++a, pFlag, *pFlag,
vctTemp[0], 100, string("hello"), str1, str1+str2, m
分别是左值还是右值?
a
和b
都是持久对象(可以对其取地址),是左值;
a+b
是临时对象(不可以对其取地址),是右值;
a++
是先取出持久对象a
的一份拷贝,再使持久对象a
的值加1,最后返回那份拷贝,而那份拷贝是临时对象(不可以对其取地址),故其是右值;
++a
则是使持久对象a
的值加1,并返回那个持久对象a
本身(可以对其取地址),故其是左值;
pFlag
和*pFlag
都是持久对象(可以对其取地址),是左值;
vctTemp[0]
调用了重载的[]
操作符,而[]
操作符返回的是一个int
&
,为持久对象(可以对其取地址),是左值;
100
和string("hello")
是临时对象(不可以对其取地址),是右值;
str1
是持久对象(可以对其取地址),是左值;
str1+str2
是调用了+
操作符,而+
操作符返回的是一个string
(不可以对其取地址),故其为右值;
m
是一个常量引用,引用到一个右值,但引用本身是一个持久对象(可以对其取地址),为左值。
区分清楚了左值与右值,我们再来看看左值引用。左值引用根据其修饰符的不同,可以分为非常量左值引用和常量左值引用。
非常量左值引用只能绑定到非常量左值,不能绑定到常量左值、非常量右值和常量右值。如果允许绑定到常量左值和常量右值,则非常量左值引用可以用于修改常量左值和常量右值,这明显违反了其常量的含义。如果允许绑定到非常量右值,则会导致非常危险的情况出现,因为非常量右值是一个临时对象,非常量左值引用可能会使用一个已经被销毁了的临时对象。
常量左值引用可以绑定到所有类型的值,包括非常量左值、常量左值、非常量右值和常量右值。
可以看出,使用左值引用时,我们无法区分出绑定的是否是非常量右值的情况。那么,为什么要对非常量右值进行区分呢,区分出来了又有什么好处呢?这就牵涉到C++
中一个著名的性能问题——拷贝临时对象。考虑下面的代码:
vector<int> GetAllScores()
{
vector<int> vctTemp;
vctTemp.push_back(90);
vctTemp.push_back(95);
return vctTemp;
}
当使用vector<int> vctScore = GetAllScores()
进行初始化时,实际上调用了三次构造函数(一次是vecTemp的构造,一次是return
临时对象的构造,一次是vecScore的复制构造)
。尽管有些编译器可以采用RVO(Return Value
Optimization)
来进行优化,但优化工作只在某些特定条件下才能进行。可以看到,上面很普通的一个函数调用,由于存在临时对象的拷贝,导致了额外的两次拷贝构造函数和析构函数的开销。当然,我们也可以修改函数的形式为void
GetAllScores(vector<int> &vctScore)
,但这并不一定就是我们需要的形式。另外,考虑下面字符串的连接操作:
string s1("hello");
string s = s1 + "a" + "b" + "c" + "d" + "e";
在对s
进行初始化时,会产生大量的临时对象,并涉及到大量字符串的拷贝操作,这显然会影响程序的效率和性能。怎么解决这个问题呢?如果我们能确定某个值是一个非常量右值(或者是一个以后不会再使用的左值),则我们在进行临时对象的拷贝时,可以不用拷贝实际的数据,而只是“窃取”指向实际数据的指针(类似于STL
中的auto_ptr
,会转移所有权)。C++
11
中引入的右值引用正好可用于标识一个非常量右值。C++ 11
中用&
表示左值引用,用&&
表示右值引用,如:
int &&a = 10;
右值引用根据其修饰符的不同,也可以分为非常量右值引用和常量右值引用。
非常量右值引用只能绑定到非常量右值,不能绑定到非常量左值、常量左值和常量右值。如果允许绑定到非常量左值,则可能会错误地窃取一个持久对象的数据,而这是非常危险的;如果允许绑定到常量左值和常量右值,则非常量右值引用可以用于修改常量左值和常量右值,这明显违反了其常量的含义。
常量右值引用可以绑定到非常量右值和常量右值,不能绑定到非常量左值和常量左值(理由同上)。
有了右值引用的概念,我们就可以用它来实现下面的CMyString类。
class CMyString
{
public:
// 构造函数
CMyString(const char *pszSrc = NULL)
{
cout << "CMyString(const char *pszSrc = NULL)" << endl;
if (pszSrc == NULL)
{
m_pData = new char[1];
*m_pData = ‘\0‘;
}
else
{
m_pData = new char[strlen(pszSrc)+1];
strcpy(m_pData, pszSrc);
}
}
// 拷贝构造函数
CMyString(const CMyString &s)
{
cout << "CMyString(const CMyString &s)" << endl;
m_pData = new char[strlen(s.m_pData)+1];
strcpy(m_pData, s.m_pData);
}
// move构造函数 ---- 实质上就是·窃取·临时对象,注意参数的形式
CMyString(CMyString &&s)
{
cout << "CMyString(CMyString &&s)" << endl;
m_pData = s.m_pData;
s.m_pData = NULL;
}
// 析构函数
~CMyString()
{
cout << "~CMyString()" << endl;
delete [] m_pData;
m_pData = NULL;
}
// 拷贝赋值函数
CMyString &operator =(const CMyString &s)
{
cout << "CMyString &operator =(const CMyString &s)" << endl;
if (this != &s)
{
delete [] m_pData;
m_pData = new char[strlen(s.m_pData)+1];
strcpy(m_pData, s.m_pData);
}
return *this;
}
// move赋值函数
CMyString &operator =(CMyString &&s)
{
cout << "CMyString &operator =(CMyString &&s)" << endl;
if (this != &s)
{
delete [] m_pData;
m_pData = s.m_pData;
s.m_pData = NULL;
}
return *this;
}
private:
char *m_pData;
};
可以看到,上面我们添加了move
版本的构造函数和赋值函数。那么,添加了move
版本后,对类的自动生成规则有什么影响呢?唯一的影响就是,如果提供了move
版本的构造函数,则不会生成默认的构造函数。另外,编译器永远不会自动生成move
版本的构造函数和赋值函数,它们需要你手动显式地添加。
当添加了move
版本的构造函数和赋值函数的重载形式后,某一个函数调用应当使用哪一个重载版本呢?下面是按照判决的优先级列出的3条规则:
1、常量值只能绑定到常量引用上,不能绑定到非常量引用上。
2、左值优先绑定到左值引用上,右值优先绑定到右值引用上。
3、非常量值优先绑定到非常量引用上。
当给构造函数或赋值函数传入一个非常量右值时,依据上面给出的判决规则,可以得出会调用move
版本的构造函数或赋值函数。而在move
版本的构造函数或赋值函数内部,都是直接“移动”了其内部数据的指针(因为它是非常量右值,是一个临时对象,移动了其内部数据的指针不会导致任何问题,它马上就要被销毁了,我们只是重复利用了其内存),这样就省去了拷贝数据的大量开销。
一个需要注意的地方是,拷贝构造函数可以通过直接调用*this =
s
来实现,但move
构造函数却不能。这是因为在move
构造函数中,s
虽然是一个非常量右值引用,但其本身却是一个左值(是持久对象,可以对其取地址),因此调用*this
= s
时,会使用拷贝赋值函数而不是move
赋值函数,而这已与move
构造函数的语义不相符。要使语义正确,我们需要将左值绑定到非常量右值引用上,C++
11
提供了move
函数来实现这种转换,因此我们可以修改为*this
= move(s)
,这样move
构造函数就会调用move
赋值函数。
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。