可移动固定内存测试

可移动固定内存测试,项目打包下载

  1 #include "../common/book.h"
  2 #include "cuda_runtime.h"
  3 #include "device_launch_parameters.h"
  4 #include "device_functions.h"
  5 #define imin(a,b) (a<b?a:b)
  6 
  7 #define     N    (33*1024*1024)
  8 const int threadsPerBlock = 256;
  9 const int blocksPerGrid =
 10 imin(32, (N / 2 + threadsPerBlock - 1) / threadsPerBlock);
 11 
 12 
 13 __global__ void dot(int size, float *a, float *b, float *c) {
 14     __shared__ float cache[threadsPerBlock];
 15     int tid = threadIdx.x + blockIdx.x * blockDim.x;
 16     int cacheIndex = threadIdx.x;
 17 
 18     float   temp = 0;
 19     while (tid < size) {
 20         temp += a[tid] * b[tid];
 21         tid += blockDim.x * gridDim.x;
 22     }
 23 
 24     // set the cache values
 25     cache[cacheIndex] = temp;
 26 
 27     //块内线程同步
 28     __syncthreads();
 29 
 30     // for reductions, threadsPerBlock must be a power of 2
 31     // because of the following code
 32     int i = blockDim.x / 2;
 33     while (i != 0) {
 34         if (cacheIndex < i)
 35             cache[cacheIndex] += cache[cacheIndex + i];
 36         __syncthreads();
 37         i /= 2;
 38     }
 39 
 40     if (cacheIndex == 0)
 41         c[blockIdx.x] = cache[0];
 42 }
 43 
 44 
 45 struct DataStruct {
 46     int     deviceID;
 47     int     size;
 48     int     offset;
 49     float   *a;
 50     float   *b;
 51     float   returnValue;
 52 };
 53 
 54 unsigned WINAPI routine(void *pvoidData)
 55 //void* routine(void *pvoidData) 
 56 {
 57     DataStruct  *data = (DataStruct*)pvoidData;
 58     //device0上已经调用了这个代码,这里是device为非0才调用
 59     if (data->deviceID != 0) {
 60         HANDLE_ERROR(cudaSetDevice(data->deviceID));
 61         //告诉运行时希望在和这个设备上分配零拷贝内存,不用在设定是否为可移动的,因为在device0中已经设定
 62         HANDLE_ERROR(cudaSetDeviceFlags(cudaDeviceMapHost));
 63     }
 64 
 65     int     size = data->size;
 66     float   *a, *b, c, *partial_c;
 67     float   *dev_a, *dev_b, *dev_partial_c;
 68 
 69     // allocate memory on the CPU side
 70     a = data->a;
 71     b = data->b;
 72     partial_c = (float*)malloc(blocksPerGrid*sizeof(float));
 73 
 74     // allocate the memory on the GPU
 75     HANDLE_ERROR(cudaHostGetDevicePointer(&dev_a, a, 0));
 76     HANDLE_ERROR(cudaHostGetDevicePointer(&dev_b, b, 0));
 77     HANDLE_ERROR(cudaMalloc((void**)&dev_partial_c,
 78         blocksPerGrid*sizeof(float)));
 79 
 80     // offset ‘a‘ and ‘b‘ to where this GPU is gets it data
 81     dev_a += data->offset;
 82     dev_b += data->offset;
 83 
 84     dot << <blocksPerGrid, threadsPerBlock >> >(size, dev_a, dev_b,
 85         dev_partial_c);
 86     // copy the array ‘c‘ back from the GPU to the CPU
 87     HANDLE_ERROR(cudaMemcpy(partial_c, dev_partial_c,
 88         blocksPerGrid*sizeof(float),
 89         cudaMemcpyDeviceToHost));
 90 
 91     // finish up on the CPU side
 92     c = 0;
 93     for (int i = 0; i<blocksPerGrid; i++) {
 94         c += partial_c[i];
 95     }
 96 
 97     HANDLE_ERROR(cudaFree(dev_partial_c));
 98 
 99     // free memory on the CPU side
100     free(partial_c);
101 
102     data->returnValue = c;
103     return 0;
104 }
105 
106 
107 int main(void) {
108     int deviceCount;
109     HANDLE_ERROR(cudaGetDeviceCount(&deviceCount));
110     if (deviceCount < 2) {
111         printf("We need at least two compute 1.0 or greater "
112             "devices, but only found %d\n", deviceCount);
113         return 0;
114     }
115 
116     cudaDeviceProp  prop;
117     for (int i = 0; i<2; i++) {
118         HANDLE_ERROR(cudaGetDeviceProperties(&prop, i));
119         if (prop.canMapHostMemory != 1) {
120             printf("Device %d can not map memory.\n", i);
121             return 0;
122         }
123     }
124 
125     float *a, *b;
126     HANDLE_ERROR(cudaSetDevice(0));
127     HANDLE_ERROR(cudaSetDeviceFlags(cudaDeviceMapHost));
128     /*
129     在设置了设备0后,设置了分配内存的类型为cudaHostAllocPortable,
130     否则只有设备0会将这些分配的内存视为固定内存
131     只在device0中设定为可移动的
132     */
133     HANDLE_ERROR(cudaHostAlloc((void**)&a, N*sizeof(float),
134         cudaHostAllocWriteCombined |
135         cudaHostAllocPortable |
136         cudaHostAllocMapped));
137     HANDLE_ERROR(cudaHostAlloc((void**)&b, N*sizeof(float),
138         cudaHostAllocWriteCombined |
139         cudaHostAllocPortable |
140         cudaHostAllocMapped));
141 
142     // fill in the host memory with data
143     for (int i = 0; i<N; i++) {
144         a[i] = i;
145         b[i] = i * 2;
146     }
147 
148     // prepare for multithread
149     DataStruct  data[2];
150     data[0].deviceID = 0;
151     data[0].offset = 0;
152     data[0].size = N / 2;
153     data[0].a = a;
154     data[0].b = b;
155 
156     data[1].deviceID = 1;
157     data[1].offset = N / 2;
158     data[1].size = N / 2;
159     data[1].a = a;
160     data[1].b = b;
161 
162     CUTThread   thread = start_thread(routine, &(data[1]));
163     routine(&(data[0]));
164     end_thread(thread);
165 
166 
167     // free memory on the CPU side
168     HANDLE_ERROR(cudaFreeHost(a));
169     HANDLE_ERROR(cudaFreeHost(b));
170 
171     printf("Value calculated:  %f\n",
172         data[0].returnValue + data[1].returnValue);
173 
174     return 0;
175 }

 

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。