hdu1198Farm Irrigation(dfs找联通)

题目链接:

思路是:首先根据图像抽象出联通关系。。首先确定每一种图形的联通关系,用01值表示不连通与不连通。。。然后从第1个图形进行dfs搜索。如果碰到两快田地可以联通的话那么标记。。注意处理的过程中你的

搜索顺序要和你的每个图形的连通性的顺序相同。。然后就是最后看上下。左右能否匹配。。。看最后有几个不同的快,这就是答案,感觉跟并查集一样。。并查集应该也可以做。。


题目:

Farm Irrigation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5696    Accepted Submission(s): 2474


Problem Description
Benny has a spacious farm land to irrigate. The farm land is a rectangle, and is divided into a lot of samll squares. Water pipes are placed in these squares. Different square has a different type of pipe. There are 11 types of pipes, which is marked from A to K, as Figure 1 shows.


Figure 1


Benny has a map of his farm, which is an array of marks denoting the distribution of water pipes over the whole farm. For example, if he has a map 

ADC
FJK
IHE

then the water pipes are distributed like 


Figure 2


Several wellsprings are found in the center of some squares, so water can flow along the pipes from one square to another. If water flow crosses one square, the whole farm land in this square is irrigated and will have a good harvest in autumn. 

Now Benny wants to know at least how many wellsprings should be found to have the whole farm land irrigated. Can you help him? 

Note: In the above example, at least 3 wellsprings are needed, as those red points in Figure 2 show.
 

Input
There are several test cases! In each test case, the first line contains 2 integers M and N, then M lines follow. In each of these lines, there are N characters, in the range of ‘A‘ to ‘K‘, denoting the type of water pipe over the corresponding square. A negative M or N denotes the end of input, else you can assume 1 <= M, N <= 50.
 

Output
For each test case, output in one line the least number of wellsprings needed.
 

Sample Input
2 2 DK HF 3 3 ADC FJK IHE -1 -1
 

Sample Output
2 3
 

Author
ZHENG, Lu
 

Source
 

Recommend
Ignatius.L   |   We have carefully selected several similar problems for you:  1232 1213 1856 1811 1829 

代码为:

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;

int n,m,ans;
const int maxn=50+10;
int map[maxn][maxn];

int dX[]={-1,0,1,0};
int dY[]={0,1,0,-1};

int pipe[11][4]={{1,0,0,1},{1,1,0,0},{0,0,1,1},{0,1,1,0},{1,0,1,0},{0,1,0,1},{1,1,0,1},{1,0,1,1},{0,1,1,1},{1,1,1,0},{1,1,1,1}};
int hash[maxn][maxn];

bool check(int row,int col)
{
    if(row>=0&&row<n&&col>=0&&col<m&&!hash[row][col])
        return true;
    return false;
}

void dfs(int row,int col)
{
    hash[row][col]=1;
    for(int k=0;k<4;k++)
    {
        int dx=row+dX[k];
        int dy=col+dY[k];
        if(check(dx,dy)&&pipe[map[row][col]][k]==1&&pipe[map[dx][dy]][(k+2)%4]==1)
           dfs(dx,dy);
    }
}

void solve()
{
    memset(hash,0,sizeof(hash));
    for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
    {
       if(!hash[i][j])
        {
           dfs(i,j);
            ans++;
        }
    }
}

int main()
{
    char str[maxn];
    while(~scanf("%d%d",&n,&m))
    {
        ans=0;
        if(n<=0||m<=0)  return 0;
        for(int i=0;i<n;i++)
        {
            scanf("%s",str);
            for(int j=0;j<m;j++)
                map[i][j]=str[j]-'A';
        }
        solve();
        printf("%d\n",ans);
    }
    return 0;
}


hdu1198Farm Irrigation(dfs找联通),,5-wow.com

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。