POJ2385——Apple Catching
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8062 | Accepted: 3951 |
Description
Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).
Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.
Input
* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.
Output
Sample Input
7 2 2 1 1 2 2 1 1
Sample Output
6
Hint
Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.
OUTPUT DETAILS:
Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.
Source
简单的dp题,设dp[i][j][0], dp[i][j][1]分别表示到第i分钟时,一共走了j个来回,此时在1/2树下所能得到的苹果的最多数目
#include <map> #include <set> #include <list> #include <queue> #include <stack> #include <vector> #include <cstdlib> #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; int dp[1010][33][2]; int app[1010]; int main() { int t, w; while (~scanf("%d%d", &t, &w)) { for (int i = 1; i <= t; ++i) { scanf("%d", &app[i]); } memset (dp, 0, sizeof(dp)); for (int i = 1; i <= t; ++i) { dp[i][0][0] = dp[i - 1][0][0] + (app[i] == 1 ? 1 : 0); dp[i][0][1] = dp[i - 1][0][1] + (app[i] == 2 ? 1 : 0); for (int j = 1; j <= (i - 1 > w ? w : i - 1); ++j) { dp[i][j][0] = max(dp[i - 1][j][0], dp[i - 1][j - 1][1]) + (app[i] == 1 ? 1 : 0); dp[i][j][1] = max(dp[i - 1][j][1], dp[i - 1][j - 1][0]) + (app[i] == 2 ? 1 : 0); } } int ans = 0; for (int i = 0; i <= w; ++i) { ans = max(ans, max(dp[t][i][0], dp[t][i][1])); } printf("%d\n", ans); } return 0; }
虽然本来内存就很够,但我还是用滚动数组写了下
#include <map> #include <set> #include <list> #include <queue> #include <stack> #include <vector> #include <cstdlib> #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; int dp[2][33][2]; int app[1010]; int main() { int t, w; while (~scanf("%d%d", &t, &w)) { for (int i = 1; i <= t; ++i) { scanf("%d", &app[i]); } memset (dp, 0, sizeof(dp)); for (int i = 1; i <= t; ++i) { dp[i % 2][0][0] = dp[1 - i % 2][0][0] + (app[i] == 1 ? 1 : 0); dp[i % 2][0][1] = dp[1 - i % 2][0][1] + (app[i] == 2 ? 1 : 0); for (int j = 1; j <= (i - 1 > w ? w : i - 1); ++j) { dp[i % 2][j][0] = max(dp[1 - i % 2][j][0], dp[1 - i % 2][j - 1][1]) + (app[i] == 1 ? 1 : 0); dp[i % 2][j][1] = max(dp[1 - i % 2][j][1], dp[1 - i % 2][j - 1][0]) + (app[i] == 2 ? 1 : 0); } } int ans = 0; for (int i = 0; i <= w; ++i) { ans = max(ans, max(dp[t % 2][i][0], dp[t % 2][i][1])); } printf("%d\n", ans); } return 0; }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。