Android AudioPolicyService服务启动过程

AudioPolicyService是策略的制定者,比如什么时候打开音频接口设备、某种Stream类型的音频对应什么设备等等。而AudioFlinger则是策略的执行者,例如具体如何与音频设备通信,如何维护现有系统中的音频设备,以及多个音频流的混音如何处理等等都得由它来完成。AudioPolicyService根据用户配置来指导AudioFlinger加载设备接口,起到路由功能。

AudioPolicyService启动过程

AudioPolicyService服务运行在mediaserver进程中,随着mediaserver进程启动而启动。

frameworks\av\media\mediaserver\ Main_mediaserver.cpp

int main(int argc, char** argv)
{
    sp<ProcessState> proc(ProcessState::self());
    sp<IServiceManager> sm = defaultServiceManager();
    ALOGI("ServiceManager: %p", sm.get());
    VolumeManager::instantiate(); // volumemanager have to be started before audioflinger
    AudioFlinger::instantiate();
    MediaPlayerService::instantiate();
    CameraService::instantiate();
    AudioPolicyService::instantiate();
    ProcessState::self()->startThreadPool();
    IPCThreadState::self()->joinThreadPool();
}

AudioPolicyService继承了模板类BinderService,该类用于注册native service。

frameworks\native\include\binder\ BinderService.h

template<typename SERVICE>
class BinderService
{
public:
    static status_t publish(bool allowIsolated = false) {
        sp<IServiceManager> sm(defaultServiceManager());
        return sm->addService(String16(SERVICE::getServiceName()), new SERVICE(), allowIsolated);
    }
    static void instantiate() { publish(); }
};

BinderService是一个模板类,该类的publish函数就是完成向ServiceManager注册服务。

static const char *getServiceName() { return "media.audio_policy"; }

AudioPolicyService注册名为media.audio_policy的服务。

AudioPolicyService::AudioPolicyService()
    : BnAudioPolicyService() , mpAudioPolicyDev(NULL) , mpAudioPolicy(NULL)
{
    char value[PROPERTY_VALUE_MAX];
    const struct hw_module_t *module;
    int forced_val;
    int rc;
    Mutex::Autolock _l(mLock);
    // start tone playback thread
    mTonePlaybackThread = new AudioCommandThread(String8("ApmTone"), this);
    // start audio commands thread
    mAudioCommandThread = new AudioCommandThread(String8("ApmAudio"), this);
    // start output activity command thread
    mOutputCommandThread = new AudioCommandThread(String8("ApmOutput"), this);
    /* instantiate the audio policy manager */
	/* 加载audio_policy.default.so库得到audio_policy_module模块 */
    rc = hw_get_module(AUDIO_POLICY_HARDWARE_MODULE_ID, &module);
    if (rc)
        return;
	/* 通过audio_policy_module模块打开audio_policy_device设备 */
    rc = audio_policy_dev_open(module, &mpAudioPolicyDev);
    ALOGE_IF(rc, "couldn't open audio policy device (%s)", strerror(-rc));
    if (rc)
        return;
	//通过audio_policy_device设备创建audio_policy
    rc = mpAudioPolicyDev->create_audio_policy(mpAudioPolicyDev, &aps_ops, this,
                                               &mpAudioPolicy);
    ALOGE_IF(rc, "couldn't create audio policy (%s)", strerror(-rc));
    if (rc)
        return;
    rc = mpAudioPolicy->init_check(mpAudioPolicy);
    ALOGE_IF(rc, "couldn't init_check the audio policy (%s)", strerror(-rc));
    if (rc)
        return;
    /* SPRD: maybe set this property better, but here just change the default value @{ */
    property_get("ro.camera.sound.forced", value, "1");
    forced_val = strtol(value, NULL, 0);
    ALOGV("setForceUse() !forced_val=%d ",!forced_val);
    mpAudioPolicy->set_can_mute_enforced_audible(mpAudioPolicy, !forced_val);
    ALOGI("Loaded audio policy from %s (%s)", module->name, module->id);
    // 读取audio_effects.conf文件
    if (access(AUDIO_EFFECT_VENDOR_CONFIG_FILE, R_OK) == 0) {
        loadPreProcessorConfig(AUDIO_EFFECT_VENDOR_CONFIG_FILE);
    } else if (access(AUDIO_EFFECT_DEFAULT_CONFIG_FILE, R_OK) == 0) {
        loadPreProcessorConfig(AUDIO_EFFECT_DEFAULT_CONFIG_FILE);
    }
}
  1. 创建AudioCommandThread (ApmToneApmAudioApmOutput)
  2. 加载legacy_ap_module
  3. 打开legacy_ap_device
  4. 创建legacy_audio_policy
  5. 读取audio_effects.conf

创建AudioCommandThread线程

在AudioPolicyService对象构造过程中,分别创建了ApmTone、ApmAudio、ApmOutput三个AudioCommandThread线程:

1、 ApmTone用于播放tone音;

2、 ApmAudio用于执行audio命令;

3、ApmOutput用于执行输出命令;

在第一次强引用AudioCommandThread线程对象时,AudioCommandThread的onFirstRef函数被回调,在此启动线程

void AudioPolicyService::AudioCommandThread::onFirstRef()
{
    run(mName.string(), ANDROID_PRIORITY_AUDIO);
}

这里采用异步方式来执行audio command,当需要执行上表中的命令时,首先将命令投递到AudioCommandThread的mAudioCommands命令向量表中,然后通过mWaitWorkCV.signal()唤醒AudioCommandThread线程,被唤醒的AudioCommandThread线程执行完command后,又通过mWaitWorkCV.waitRelative(mLock, waitTime)睡眠等待命令到来。

加载audio_policy_module模块

audio_policy硬件抽象层动态库位于/system/lib/hw/目录下,命名为:audio_policy.$(TARGET_BOARD_PLATFORM).so。audiopolicy的硬件抽象层定义在hardware\libhardware_legacy\audio\audio_policy_hal.cpp中,AUDIO_POLICY_HARDWARE_MODULE_ID硬件抽象模块定义如下:

hardware\libhardware_legacy\audio\ audio_policy_hal.cpp【audio_policy.scx15.so】

struct legacy_ap_module HAL_MODULE_INFO_SYM = {
    module: {
        common: {
            tag: HARDWARE_MODULE_TAG,
            version_major: 1,
            version_minor: 0,
            id: AUDIO_POLICY_HARDWARE_MODULE_ID,
            name: "LEGACY Audio Policy HAL",
            author: "The Android Open Source Project",
            methods: &legacy_ap_module_methods,
            dso : NULL,
            reserved : {0},
        },
    },
};

legacy_ap_module继承于audio_policy_module


 

关于hw_get_module函数加载硬件抽象层模块的过程请参考Android硬件抽象Hardware库加载过程源码分析

打开audio_policy_device设备

hardware\libhardware\include\hardware\ audio_policy.h

static inline int audio_policy_dev_open(const hw_module_t* module,
                                    struct audio_policy_device** device)
{
    return module->methods->open(module, AUDIO_POLICY_INTERFACE,
                                 (hw_device_t**)device);
}

通过legacy_ap_module模块的open方法来打开一个legacy_ap_device设备。

hardware\libhardware_legacy\audio\ audio_policy_hal.cpp

static int legacy_ap_dev_open(const hw_module_t* module, const char* name,
                                    hw_device_t** device)
{
    struct legacy_ap_device *dev;
    if (strcmp(name, AUDIO_POLICY_INTERFACE) != 0)
        return -EINVAL;
    dev = (struct legacy_ap_device *)calloc(1, sizeof(*dev));
    if (!dev)
        return -ENOMEM;
    dev->device.common.tag = HARDWARE_DEVICE_TAG;
    dev->device.common.version = 0;
    dev->device.common.module = const_cast<hw_module_t*>(module);
    dev->device.common.close = legacy_ap_dev_close;
    dev->device.create_audio_policy = create_legacy_ap;
    dev->device.destroy_audio_policy = destroy_legacy_ap;
    *device = &dev->device.common;
    return 0;
}

打开得到一个legacy_ap_device设备,通过该抽象设备可以创建一个audio_policy对象。

创建audio_policy对象

在打开legacy_ap_device设备时,该设备的create_audio_policy成员初始化为create_legacy_ap函数指针,我们通过legacy_ap_device设备可以创建一个legacy_audio_policy对象。

rc = mpAudioPolicyDev->create_audio_policy(mpAudioPolicyDev, &aps_ops, this,
                                               &mpAudioPolicy);

这里通过audio_policy_device设备创建audio策略对象

hardware\libhardware_legacy\audio\ audio_policy_hal.cpp

static int create_legacy_ap(const struct audio_policy_device *device,
                            struct audio_policy_service_ops *aps_ops,
                            void *service,
                            struct audio_policy **ap)
{
    struct legacy_audio_policy *lap;
    int ret;
    if (!service || !aps_ops)
        return -EINVAL;
    lap = (struct legacy_audio_policy *)calloc(1, sizeof(*lap));
    if (!lap)
        return -ENOMEM;
lap->policy.set_device_connection_state = ap_set_device_connection_state;
…
    lap->policy.dump = ap_dump;
    lap->policy.is_offload_supported = ap_is_offload_supported;
    lap->service = service;
    lap->aps_ops = aps_ops;
    lap->service_client = new AudioPolicyCompatClient(aps_ops, service);
    if (!lap->service_client) {
        ret = -ENOMEM;
        goto err_new_compat_client;
    }
    lap->apm = createAudioPolicyManager(lap->service_client);
    if (!lap->apm) {
        ret = -ENOMEM;
        goto err_create_apm;
    }
    *ap = &lap->policy;
    return 0;
err_create_apm:
    delete lap->service_client;
err_new_compat_client:
    free(lap);
    *ap = NULL;
    return ret;
}

audio_policy实现在audio_policy_hal.cpp中,audio_policy_service_ops实现在AudioPolicyService.cpp中。create_audio_policy()函数就是创建并初始化一个legacy_audio_policy对象。

audio_policy与AudioPolicyService、AudioPolicyCompatClient之间的关系如下:

AudioPolicyClient创建

hardware\libhardware_legacy\audio\ AudioPolicyCompatClient.h

AudioPolicyCompatClient(struct audio_policy_service_ops *serviceOps,void *service) :
		mServiceOps(serviceOps) , mService(service) {}

AudioPolicyCompatClient是对audio_policy_service_ops的封装类,对外提供audio_policy_service_ops数据结构中定义的接口。

AudioPolicyManager创建

extern "C" AudioPolicyInterface* createAudioPolicyManager(AudioPolicyClientInterface *clientInterface)
{
    ALOGI("SPRD policy manager created.");
    return new AudioPolicyManagerSPRD(clientInterface);
}

使用AudioPolicyClientInterface对象来构造AudioPolicyManagerSPRD对象,AudioPolicyManagerSPRD继承于AudioPolicyManagerBase,而AudioPolicyManagerBase又继承于AudioPolicyInterface。

hardware\libhardware_legacy\audio\ AudioPolicyManagerBase.cpp

AudioPolicyManagerBase::AudioPolicyManagerBase(AudioPolicyClientInterface *clientInterface)
    :
#ifdef AUDIO_POLICY_TEST
    Thread(false),
#endif //AUDIO_POLICY_TEST
    //变量初始化
    mPrimaryOutput((audio_io_handle_t)0),
    mAvailableOutputDevices(AUDIO_DEVICE_NONE),
    mPhoneState(AudioSystem::MODE_NORMAL),
    mLimitRingtoneVolume(false), mLastVoiceVolume(-1.0f),
    mTotalEffectsCpuLoad(0), mTotalEffectsMemory(0),
    mA2dpSuspended(false), mHasA2dp(false), mHasUsb(false), mHasRemoteSubmix(false),
    mSpeakerDrcEnabled(false), mFmOffGoing(false)
{
	//引用AudioPolicyCompatClient对象,这样音频管理器AudioPolicyManager就可以使用audio_policy_service_ops中的接口
    mpClientInterface = clientInterface;
    for (int i = 0; i < AudioSystem::NUM_FORCE_USE; i++) {
        mForceUse[i] = AudioSystem::FORCE_NONE;
    }
    mA2dpDeviceAddress = String8("");
    mScoDeviceAddress = String8("");
    mUsbCardAndDevice = String8("");
    /**
     * 优先加载/vendor/etc/audio_policy.conf配置文件,如果该配置文件不存在,则
     * 加载/system/etc/audio_policy.conf配置文件,如果该文件还是不存在,则通过
     * 函数defaultAudioPolicyConfig()来设置默认音频接口
     */
    if (loadAudioPolicyConfig(AUDIO_POLICY_VENDOR_CONFIG_FILE) != NO_ERROR) {
        if (loadAudioPolicyConfig(AUDIO_POLICY_CONFIG_FILE) != NO_ERROR) {
            ALOGE("could not load audio policy configuration file, setting defaults");
            defaultAudioPolicyConfig();
        }
    }
    //设置各种音频流对应的音量调节点,must be done after reading the policy
    initializeVolumeCurves();
    // open all output streams needed to access attached devices
    for (size_t i = 0; i < mHwModules.size(); i++) {
    	//通过名称打开对应的音频接口硬件抽象库
        mHwModules[i]->mHandle = mpClientInterface->loadHwModule(mHwModules[i]->mName);
        if (mHwModules[i]->mHandle == 0) {
            ALOGW("could not open HW module %s", mHwModules[i]->mName);
            continue;
        }
        // open all output streams needed to access attached devices
        // except for direct output streams that are only opened when they are actually
        // required by an app.
        for (size_t j = 0; j < mHwModules[i]->mOutputProfiles.size(); j++)
        {
            const IOProfile *outProfile = mHwModules[i]->mOutputProfiles[j];
            //打开mAttachedOutputDevices对应的输出
            if ((outProfile->mSupportedDevices & mAttachedOutputDevices) &&
                    ((outProfile->mFlags & AUDIO_OUTPUT_FLAG_DIRECT) == 0)) {
            	//将输出IOProfile封装为AudioOutputDescriptor对象
                AudioOutputDescriptor *outputDesc = new AudioOutputDescriptor(outProfile);
                //设置当前音频接口的默认输出设备
                outputDesc->mDevice = (audio_devices_t)(mDefaultOutputDevice & outProfile->mSupportedDevices);
                //打开输出,在AudioFlinger中创建PlaybackThread线程,并返回该线程的id
                audio_io_handle_t output = mpClientInterface->openOutput(
                                                outProfile->mModule->mHandle,
                                                &outputDesc->mDevice,
                                                &outputDesc->mSamplingRate,
                                                &outputDesc->mFormat,
                                                &outputDesc->mChannelMask,
                                                &outputDesc->mLatency,
                                                outputDesc->mFlags);
                if (output == 0) {
                    delete outputDesc;
                } else {
                	//设置可以使用的输出设备为mAttachedOutputDevices
                    mAvailableOutputDevices =(audio_devices_t)(mAvailableOutputDevices | (outProfile->mSupportedDevices & mAttachedOutputDevices));
                    if (mPrimaryOutput == 0 && outProfile->mFlags & AUDIO_OUTPUT_FLAG_PRIMARY) {
                        mPrimaryOutput = output;
                    }
                    //将输出描述符对象AudioOutputDescriptor及创建的PlaybackThread线程id以键值对形式保存
                    addOutput(output, outputDesc);
                    //设置默认输出设备
                    setOutputDevice(output,(audio_devices_t)(mDefaultOutputDevice & outProfile->mSupportedDevices),true);
                }
            }
        }
    }
    ALOGE_IF((mAttachedOutputDevices & ~mAvailableOutputDevices),
             "Not output found for attached devices %08x",
             (mAttachedOutputDevices & ~mAvailableOutputDevices));
    ALOGE_IF((mPrimaryOutput == 0), "Failed to open primary output");
    updateDevicesAndOutputs();

    //  add for bug158794 start
    char bootvalue[PROPERTY_VALUE_MAX];
    // prop sys.boot_completed will set 1 when system ready (ActivityManagerService.java)...
    property_get("sys.boot_completed", bootvalue, "");
    if (strncmp("1", bootvalue, 1) != 0) {
        startReadingThread();
    }
    // add for bug158794 end

#ifdef AUDIO_POLICY_TEST
    ...
#endif //AUDIO_POLICY_TEST
}

AudioPolicyManagerBase对象构造过程中主要完成以下几个步骤:

1、  loadAudioPolicyConfig(AUDIO_POLICY_CONFIG_FILE)加载audio_policy.conf配置文件;

2、  initializeVolumeCurves()初始化各种音频流对应的音量调节点;

3、  加载audio policy硬件抽象库:mpClientInterface->loadHwModule(mHwModules[i]->mName)

4、  打开attached_output_devices输出:

mpClientInterface->openOutput();

5、  保存输出设备描述符对象:addOutput(output, outputDesc);

读取audio_policy.conf文件

Android为每种音频接口定义了对应的硬件抽象层,且编译为单独的so库。

每种音频接口定义了不同的输入输出,一个接口可以具有多个输入或者输出,每个输入输出有可以支持不同的音频设备。通过读取audio_policy.conf文件可以获取系统支持的音频接口参数。

audio_policy.conf文件定义了两种音频配置信息:

1、  当前系统支持的音频输入输出设备及默认输入输出设备;

这些信息时通过global_configuration配置项来设置,在global_configuration中定义了三种音频设备信息:

attached_output_devices:已连接的输出设备;

default_output_device:默认输出设备;

attached_input_devices:已连接的输入设备;

 

1、  系统支持的音频接口信息;

audio_policy.conf定义了系统支持的所有音频接口参数信息,比如primary、a2dp、usb等,对于primary定义如下:

a2dp定义:

usb定义:

每种音频接口包含输入输出,每种输入输出又包含多种输入输出配置,每种输入输出配置又支持多种音频设备。AudioPolicyManagerBase首先加载/vendor/etc/audio_policy.conf,如果该文件不存在,则加/system/etc/audio_policy.conf。

status_t AudioPolicyManagerBase::loadAudioPolicyConfig(const char *path)
{
    cnode *root;
    char *data;
    data = (char *)load_file(path, NULL);
    if (data == NULL) {
        return -ENODEV;
    }
    root = config_node("", "");
    //读取配置文件
    config_load(root, data);
    //解析global_configuration
    loadGlobalConfig(root);
    //解析audio_hw_modules
    loadHwModules(root);
    config_free(root);
    free(root);
    free(data);
    ALOGI("loadAudioPolicyConfig() loaded %s\n", path);
    return NO_ERROR;
}

通过loadGlobalConfig(root)函数来读取这些全局配置信息。

void AudioPolicyManagerBase::loadGlobalConfig(cnode *root)
{
    cnode *node = config_find(root, GLOBAL_CONFIG_TAG);
    if (node == NULL) {
        return;
    }
    node = node->first_child;
    while (node) {
    	//attached_output_devices AUDIO_DEVICE_OUT_EARPIECE
        if (strcmp(ATTACHED_OUTPUT_DEVICES_TAG, node->name) == 0) {
            mAttachedOutputDevices = parseDeviceNames((char *)node->value);
            ALOGW_IF(mAttachedOutputDevices == AUDIO_DEVICE_NONE,
                    "loadGlobalConfig() no attached output devices");
            ALOGV("loadGlobalConfig()mAttachedOutputDevices%04x", mAttachedOutputDevices);
        //default_output_device AUDIO_DEVICE_OUT_SPEAKER
        } else if (strcmp(DEFAULT_OUTPUT_DEVICE_TAG, node->name) == 0) {
            mDefaultOutputDevice= (audio_devices_t)stringToEnum(sDeviceNameToEnumTable,ARRAY_SIZE(sDeviceNameToEnumTable),(char *)node->value);
            ALOGW_IF(mDefaultOutputDevice == AUDIO_DEVICE_NONE,
                    "loadGlobalConfig() default device not specified");
            ALOGV("loadGlobalConfig() mDefaultOutputDevice %04x", mDefaultOutputDevice);
        //attached_input_devices AUDIO_DEVICE_IN_BUILTIN_MIC
        } else if (strcmp(ATTACHED_INPUT_DEVICES_TAG, node->name) == 0) {
            mAvailableInputDevices = parseDeviceNames((char *)node->value) & ~AUDIO_DEVICE_BIT_IN;
            ALOGV("loadGlobalConfig() mAvailableInputDevices %04x", mAvailableInputDevices);
        //speaker_drc_enabled 
        } else if (strcmp(SPEAKER_DRC_ENABLED_TAG, node->name) == 0) {
            mSpeakerDrcEnabled = stringToBool((char *)node->value);
            ALOGV("loadGlobalConfig() mSpeakerDrcEnabled = %d", mSpeakerDrcEnabled);
        }
        node = node->next;
    }
}

audio_policy.conf同时定义了多个audio 接口,每一个audio 接口包含若干output和input,而每个output和input又同时支持多种输入输出模式,每种输入输出模式又支持若干种设备。

通过loadHwModules ()函数来加载系统配置的所有audio 接口:

void AudioPolicyManagerBase::loadHwModules(cnode *root)
{
	//audio_hw_modules
    cnode *node = config_find(root, AUDIO_HW_MODULE_TAG);
    if (node == NULL) {
        return;
    }
    node = node->first_child;
    while (node) {
        ALOGV("loadHwModules() loading module %s", node->name);
        //加载音频接口
        loadHwModule(node);
        node = node->next;
    }
}

由于audio_policy.conf可以定义多个音频接口,因此该函数循环调用loadHwModule()来解析每个音频接口参数信息。Android定义HwModule类来描述每一个audio 接口参数,定义IOProfile类来描述输入输出模式配置。


到此就将audio_policy.conf文件中音频接口配置信息解析到了AudioPolicyManagerBase的成员变量mHwModules、mAttachedOutputDevices、mDefaultOutputDevice、mAvailableInputDevices中。

初始化音量调节点

音量调节点设置在Android4.1与Android4.4中的实现完全不同,在Android4.1中是通过VolumeManager服务来管理,通过devicevolume.xml文件来配置,但Android4.4取消了VolumeManager服务,将音量控制放到AudioPolicyManagerBase中。在AudioPolicyManagerBase中定义了音量调节对应的音频流描述符数组:

StreamDescriptor mStreams[AudioSystem::NUM_STREAM_TYPES];

initializeVolumeCurves()函数就是初始化该数组元素:

void AudioPolicyManagerBase::initializeVolumeCurves()
{
    for (int i = 0; i < AUDIO_STREAM_CNT; i++) {
        for (int j = 0; j < DEVICE_CATEGORY_CNT; j++) {
            mStreams[i].mVolumeCurve[j] =
                    sVolumeProfiles[i][j];
        }
    }

    // Check availability of DRC on speaker path: if available, override some of the speaker curves
    if (mSpeakerDrcEnabled) {
mStreams[AUDIO_STREAM_SYSTEM].mVolumeCurve[DEVICE_CATEGORY_SPEAKER] =
                sDefaultSystemVolumeCurveDrc;
mStreams[AUDIO_STREAM_RING].mVolumeCurve[DEVICE_CATEGORY_SPEAKER] =
                sSpeakerSonificationVolumeCurveDrc;
mStreams[AUDIO_STREAM_ALARM].mVolumeCurve[DEVICE_CATEGORY_SPEAKER] =
                sSpeakerSonificationVolumeCurveDrc;
mStreams[AUDIO_STREAM_NOTIFICATION].mVolumeCurve[DEVICE_CATEGORY_SPEAKER] =sSpeakerSonificationVolumeCurveDrc;
    }
}

sVolumeProfiles数组定义了不同音频设备下不同音频流对应的音量调节档位,定义如下:

数组元素为音量调节档位,每种模式下的音量调节都包含4个档位,定义如下:

加载audio_module模块

AudioPolicyManager通过读取audio_policy.conf配置文件,可以知道系统当前支持那些音频接口以及attached的输入输出设备、默认输出设备。接下来就需要加载这些音频接口的硬件抽象库。

这三中音频接口硬件抽象定义如下:

/vendor/sprd/open-source/libs/audio/audio_hw.c 【audio.primary.scx15.so】

struct audio_module HAL_MODULE_INFO_SYM = {
    .common = {
        .tag = HARDWARE_MODULE_TAG,
        .module_api_version = AUDIO_MODULE_API_VERSION_0_1,
        .hal_api_version = HARDWARE_HAL_API_VERSION,
        .id = AUDIO_HARDWARE_MODULE_ID,
        .name = "Spreadtrum Audio HW HAL",
        .author = "The Android Open Source Project",
        .methods = &hal_module_methods,
    },
};


external/bluetooth/bluedroid/audio_a2dp_hw/audio_a2dp_hw.c【audio.a2dp.default.so】

struct audio_module HAL_MODULE_INFO_SYM = {
    .common = {
        .tag = HARDWARE_MODULE_TAG,
        .version_major = 1,
        .version_minor = 0,
        .id = AUDIO_HARDWARE_MODULE_ID,
        .name = "A2DP Audio HW HAL",
        .author = "The Android Open Source Project",
        .methods = &hal_module_methods,
    },
};

hardware/libhardware/modules/usbaudio/audio_hw.c【audio. usb.default.so】

struct audio_module HAL_MODULE_INFO_SYM = {
    .common = {
        .tag = HARDWARE_MODULE_TAG,
        .module_api_version = AUDIO_MODULE_API_VERSION_0_1,
        .hal_api_version = HARDWARE_HAL_API_VERSION,
        .id = AUDIO_HARDWARE_MODULE_ID,
        .name = "USB audio HW HAL",
        .author = "The Android Open Source Project",
        .methods = &hal_module_methods,
    },
};

AudioPolicyClientInterface提供了加载音频接口硬件抽象库的接口函数,通过前面的介绍,我们知道,AudioPolicyCompatClient通过代理audio_policy_service_ops实现AudioPolicyClientInterface接口。

hardware\libhardware_legacy\audio\ AudioPolicyCompatClient.cpp

audio_module_handle_t AudioPolicyCompatClient::loadHwModule(const char *moduleName)
{
    return mServiceOps->load_hw_module(mService, moduleName);
}

AudioPolicyCompatClient将音频模块加载工作交给audio_policy_service_ops

frameworks\av\services\audioflinger\ AudioPolicyService.cpp

static audio_module_handle_t aps_load_hw_module(void *service,const char *name)
{
    sp<IAudioFlinger> af = AudioSystem::get_audio_flinger();
    if (af == 0) {
        ALOGW("%s: could not get AudioFlinger", __func__);
        return 0;
    }
    return af->loadHwModule(name);
}

AudioPolicyService又将其转交给AudioFlinger

frameworks\av\services\audioflinger\ AudioFlinger.cpp

audio_module_handle_t AudioFlinger::loadHwModule(const char *name)
{
    if (!settingsAllowed()) {
        return 0;
    }
    Mutex::Autolock _l(mLock);
    return loadHwModule_l(name);
}


audio_module_handle_t AudioFlinger::loadHwModule_l(const char *name)
{
    for (size_t i = 0; i < mAudioHwDevs.size(); i++) {
        if (strncmp(mAudioHwDevs.valueAt(i)->moduleName(), name, strlen(name)) == 0) {
            ALOGW("loadHwModule() module %s already loaded", name);
            return mAudioHwDevs.keyAt(i);
        }
    }
audio_hw_device_t *dev; 
//加载音频接口对应的so库,得到对应的音频接口设备audio_hw_device_t
    int rc = load_audio_interface(name, &dev);
    if (rc) {
        ALOGI("loadHwModule() error %d loading module %s ", rc, name);
        return 0;
    }
    mHardwareStatus = AUDIO_HW_INIT;
    rc = dev->init_check(dev);
    mHardwareStatus = AUDIO_HW_IDLE;
    if (rc) {
        ALOGI("loadHwModule() init check error %d for module %s ", rc, name);
        return 0;
    }
    if ((mMasterVolumeSupportLvl != MVS_NONE) &&
        (NULL != dev->set_master_volume)) {
        AutoMutex lock(mHardwareLock);
        mHardwareStatus = AUDIO_HW_SET_MASTER_VOLUME;
        dev->set_master_volume(dev, mMasterVolume);
        mHardwareStatus = AUDIO_HW_IDLE;
    }
    audio_module_handle_t handle = nextUniqueId();
    mAudioHwDevs.add(handle, new AudioHwDevice(name, dev));
    ALOGI("loadHwModule() Loaded %s audio interface from %s (%s) handle %d",
          name, dev->common.module->name, dev->common.module->id, handle);
    return handle;
}

函数首先加载系统定义的音频接口对应的so库,并打开该音频接口的抽象硬件设备audio_hw_device_t,为每个音频接口设备生成独一无二的ID号,同时将打开的音频接口设备封装为AudioHwDevice对象,将系统中所有的音频接口设备保存到AudioFlinger的成员变量mAudioHwDevs中。

函数load_audio_interface根据音频接口名称来打开抽象的音频接口设备audio_hw_device_t。

static int load_audio_interface(const char *if_name, audio_hw_device_t **dev)
{
    const hw_module_t *mod;
int rc;
//根据名字加载audio_module模块
    rc = hw_get_module_by_class(AUDIO_HARDWARE_MODULE_ID, if_name, &mod);
    ALOGE_IF(rc, "%s couldn't load audio hw module %s.%s (%s)", __func__,
                 AUDIO_HARDWARE_MODULE_ID, if_name, strerror(-rc));
    if (rc) {
        goto out;
}
//打开audio_device设备
    rc = audio_hw_device_open(mod, dev);
    ALOGE_IF(rc, "%s couldn't open audio hw device in %s.%s (%s)", __func__,
                 AUDIO_HARDWARE_MODULE_ID, if_name, strerror(-rc));
    if (rc) {
        goto out;
    }
    if ((*dev)->common.version != AUDIO_DEVICE_API_VERSION_CURRENT) {
        ALOGE("%s wrong audio hw device version %04x", __func__, (*dev)->common.version);
        rc = BAD_VALUE;
        goto out;
    }
    return 0;
out:
    *dev = NULL;
    return rc;
}

hardware\libhardware\include\hardware\ Audio.h

static inline int audio_hw_device_open(const struct hw_module_t* module,
                                       struct audio_hw_device** device)
{
    return module->methods->open(module, AUDIO_HARDWARE_INTERFACE,
                                 (struct hw_device_t**)device);
}

hardware\libhardware_legacy\audio\ audio_hw_hal.cpp

static int legacy_adev_open(const hw_module_t* module, const char* name,
                            hw_device_t** device)
{
    struct legacy_audio_device *ladev;
    int ret;
    if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0)
        return -EINVAL;
    ladev = (struct legacy_audio_device *)calloc(1, sizeof(*ladev));
    if (!ladev)
        return -ENOMEM;
    ladev->device.common.tag = HARDWARE_DEVICE_TAG;
    ladev->device.common.version = AUDIO_DEVICE_API_VERSION_1_0;
    ladev->device.common.module = const_cast<hw_module_t*>(module);
    ladev->device.common.close = legacy_adev_close;
    ladev->device.get_supported_devices = adev_get_supported_devices;
…
ladev->device.dump = adev_dump;
    ladev->hwif = createAudioHardware();
    if (!ladev->hwif) {
        ret = -EIO;
        goto err_create_audio_hw;
    }
    *device = &ladev->device.common;
    return 0;
err_create_audio_hw:
    free(ladev);
    return ret;
}

打开音频接口设备过程其实就是构造并初始化legacy_audio_device对象过程,legacy_audio_device数据结构关系如下:

 

legacy_adev_open函数就是创建并初始化一个legacy_audio_device对象:


到此就加载完系统定义的所有音频接口,并生成相应的数据对象,如下图所示:

打开音频输出

AudioPolicyService加载完所有音频接口后,就知道了系统支持的所有音频接口参数,可以为音频输出提供决策。

为了能正常播放音频数据,需要创建抽象的音频输出接口对象,打开音频输出过程如下:

audio_io_handle_t AudioPolicyCompatClient::openOutput(audio_module_handle_t module,
                                              audio_devices_t *pDevices,
                                              uint32_t *pSamplingRate,
                                              audio_format_t *pFormat,
                                              audio_channel_mask_t *pChannelMask,  
                                              uint32_t *pLatencyMs,
                                              audio_output_flags_t flags,
                                              const audio_offload_info_t *offloadInfo)
{
    return mServiceOps->open_output_on_module(mService,module, pDevices, pSamplingRate,
                                              pFormat, pChannelMask, pLatencyMs,
                                              flags, offloadInfo);
}

 

static audio_io_handle_t aps_open_output_on_module(void *service,
                                          audio_module_handle_t module,
                                          audio_devices_t *pDevices,
                                          uint32_t *pSamplingRate,
                                          audio_format_t *pFormat,
                                          audio_channel_mask_t *pChannelMask,
                                          uint32_t *pLatencyMs,
                                          audio_output_flags_t flags,
                                          const audio_offload_info_t *offloadInfo)
{
    sp<IAudioFlinger> af = AudioSystem::get_audio_flinger();
    if (af == 0) {
        ALOGW("%s: could not get AudioFlinger", __func__);
        return 0;
    }
    return af->openOutput(module, pDevices, pSamplingRate, pFormat, pChannelMask,
                          pLatencyMs, flags, offloadInfo);
}



audio_io_handle_t AudioFlinger::openOutput(audio_module_handle_t module,
                                           audio_devices_t *pDevices,
                                           uint32_t *pSamplingRate,
                                           audio_format_t *pFormat,
                                           audio_channel_mask_t *pChannelMask,
                                           uint32_t *pLatencyMs,
                                           audio_output_flags_t flags,
                                           const audio_offload_info_t *offloadInfo)
{
    PlaybackThread *thread = NULL;
    struct audio_config config;
    config.sample_rate = (pSamplingRate != NULL) ? *pSamplingRate : 0;
    config.channel_mask = (pChannelMask != NULL) ? *pChannelMask : 0;
    config.format = (pFormat != NULL) ? *pFormat : AUDIO_FORMAT_DEFAULT;
    if (offloadInfo) {
        config.offload_info = *offloadInfo;
    }
	//创建一个音频输出流对象audio_stream_out_t
    audio_stream_out_t *outStream = NULL;
    AudioHwDevice *outHwDev;
    ALOGV("openOutput(), module %d Device %x, SamplingRate %d, Format %#08x, Channels %x, flags %x",
              module,
              (pDevices != NULL) ? *pDevices : 0,
              config.sample_rate,
              config.format,
              config.channel_mask,
              flags);
    ALOGV("openOutput(), offloadInfo %p version 0x%04x",
          offloadInfo, offloadInfo == NULL ? -1 : offloadInfo->version );
    if (pDevices == NULL || *pDevices == 0) {
        return 0;
    }
    Mutex::Autolock _l(mLock);
	//从音频接口列表mAudioHwDevs中查找出对应的音频接口,如果找不到,则重新加载音频接口动态库
    outHwDev = findSuitableHwDev_l(module, *pDevices);
    if (outHwDev == NULL)
        return 0;
	//取出module对应的audio_hw_device_t设备
    audio_hw_device_t *hwDevHal = outHwDev->hwDevice();
	//为音频输出流生成一个独一无二的id号
    audio_io_handle_t id = nextUniqueId();
    mHardwareStatus = AUDIO_HW_OUTPUT_OPEN;
	//打开音频输出流
    status_t status = hwDevHal->open_output_stream(hwDevHal,
                                          id,
                                          *pDevices,
                                          (audio_output_flags_t)flags,
                                          &config,
                                          &outStream);
    mHardwareStatus = AUDIO_HW_IDLE;
    ALOGV("openOutput() openOutputStream returned output %p, SamplingRate %d, Format %#08x, "
            "Channels %x, status %d",
            outStream,
            config.sample_rate,
            config.format,
            config.channel_mask,
            status);
    if (status == NO_ERROR && outStream != NULL) {
		//使用AudioStreamOut来封装音频输出流audio_stream_out_t
        AudioStreamOut *output = new AudioStreamOut(outHwDev, outStream, flags);
		//根据flag标志位,创建不同类型的线程
        if (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) {
            thread = new OffloadThread(this, output, id, *pDevices);
            ALOGV("openOutput() created offload output: ID %d thread %p", id, thread);
        } else if ((flags & AUDIO_OUTPUT_FLAG_DIRECT) ||
            (config.format != AUDIO_FORMAT_PCM_16_BIT) ||
            (config.channel_mask != AUDIO_CHANNEL_OUT_STEREO)) {
            thread = new DirectOutputThread(this, output, id, *pDevices);
            ALOGV("openOutput() created direct output: ID %d thread %p", id, thread);
        } else {
            thread = new MixerThread(this, output, id, *pDevices);
            ALOGV("openOutput() created mixer output: ID %d thread %p", id, thread);
        }
		//将创建的线程及id以键值对的形式保存在mPlaybackThreads中
        mPlaybackThreads.add(id, thread);
        if (pSamplingRate != NULL) {
            *pSamplingRate = config.sample_rate;
        }
        if (pFormat != NULL) {
            *pFormat = config.format;
        }
        if (pChannelMask != NULL) {
            *pChannelMask = config.channel_mask;
        }
        if (pLatencyMs != NULL) {
            *pLatencyMs = thread->latency();
        }
        // notify client processes of the new output creation
        thread->audioConfigChanged_l(AudioSystem::OUTPUT_OPENED);
        // the first primary output opened designates the primary hw device
        if ((mPrimaryHardwareDev == NULL) && (flags & AUDIO_OUTPUT_FLAG_PRIMARY)) {
            ALOGI("Using module %d has the primary audio interface", module);
            mPrimaryHardwareDev = outHwDev;
            AutoMutex lock(mHardwareLock);
            mHardwareStatus = AUDIO_HW_SET_MODE;
            hwDevHal->set_mode(hwDevHal, mMode);
            mHardwareStatus = AUDIO_HW_IDLE;
        }
        return id;
    }
    return 0;
}

打开音频输出流过程其实就是创建AudioStreamOut对象及PlaybackThread线程过程。首先通过抽象的音频接口设备audio_hw_device_t来创建输出流对象legacy_stream_out。

static int adev_open_output_stream(struct audio_hw_device *dev,
                                   audio_io_handle_t handle,
                                   audio_devices_t devices,
                                   audio_output_flags_t flags,
                                   struct audio_config *config,
                                   struct audio_stream_out **stream_out)
{
    struct legacy_audio_device *ladev = to_ladev(dev);
    status_t status;
    struct legacy_stream_out *out;
int ret;
//分配一个legacy_stream_out对象
    out = (struct legacy_stream_out *)calloc(1, sizeof(*out));
    if (!out)
        return -ENOMEM;
devices = convert_audio_device(devices, HAL_API_REV_2_0, HAL_API_REV_1_0);
//创建AudioStreamOut对象
    out->legacy_out = ladev->hwif->openOutputStream(devices, (int *) &config->format,
                                                    &config->channel_mask,
                                                    &config->sample_rate, &status);
    if (!out->legacy_out) {
        ret = status;
        goto err_open;
}
//初始化成员变量audio_stream
    out->stream.common.get_sample_rate = out_get_sample_rate;
    …
    *stream_out = &out->stream;
    return 0;
err_open:
    free(out);
    *stream_out = NULL;
    return ret;
}

由于legacy_audio_device的成员变量hwif的类型为AudioHardwareInterface,因此通过调用AudioHardwareInterface的接口openOutputStream()来创建AudioStreamOut对象。

AudioStreamOut* AudioHardwareStub::openOutputStream(
        uint32_t devices, int *format, uint32_t *channels, uint32_t *sampleRate, status_t *status)
{
    AudioStreamOutStub* out = new AudioStreamOutStub();
    status_t lStatus = out->set(format, channels, sampleRate);
    if (status) {
        *status = lStatus;
    }
    if (lStatus == NO_ERROR)
        return out;
    delete out;
    return 0;
}


打开音频输出后,在AudioFlinger与AudioPolicyService中的表现形式如下:

 

 

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。