POSTGRESQL交叉表的实现
原始表数据如下:
点击(此处)折叠或打开
-
t_girl=# select * from score;
-
name | subject | score
-
-------+---------+-------
-
Lucy | English | 100
-
Lucy | Physics | 90
-
Lucy | Math | 85
-
Lily | English | 95
-
Lily | Physics | 81
-
Lily | Math | 84
-
David | English | 100
-
David | Physics | 86
-
David | Math | 89
-
Simon | English | 90
-
Simon | Physics | 76
-
Simon | Math | 79
-
(12 rows)
-
-
- Time: 2.066 ms
想要实现以下的结果:
点击(此处)折叠或打开
-
name | English | Physics | Math
-
-------+---------+---------+------
-
Simon | 90 | 76 | 79
-
Lucy | 100 | 90 | 85
-
Lily | 95 | 81 | 84
- David | 100 | 86 | 89
大致有以下几种方法:
1、用标准SQL展现出来
点击(此处)折叠或打开
-
t_girl=# select name,
-
t_girl-# sum(case when subject = ‘English‘ then score else 0 end) as "English",
-
t_girl-# sum(case when subject = ‘Physics‘ then score else 0 end) as "Physics",
-
t_girl-# sum(case when subject = ‘Math‘ then score else 0 end) as "Math"
-
t_girl-# from score
-
t_girl-# group by name order by name desc;
-
name | English | Physics | Math
-
-------+---------+---------+------
-
Simon | 90 | 76 | 79
-
Lucy | 100 | 90 | 85
-
Lily | 95 | 81 | 84
-
David | 100 | 86 | 89
-
(4 rows)
-
-
- Time: 1.123 ms
2、用PostgreSQL 提供的第三方扩展 tablefunc 带来的函数实现
以下函数crosstab 里面的SQL必须有三个字段,name, 分类以及分类值来作为起始参数,必须以name,分类值作为输出参数。
点击(此处)折叠或打开
-
t_girl=# SELECT *
-
FROM crosstab(‘select name,subject,score from score order by name desc‘,$$values (‘English‘::text),(‘Physics‘::text),(‘Math‘::text)$$)
-
AS score(name text, English int, Physics int, Math int);
-
name | english | physics | math
-
-------+---------+---------+------
-
Simon | 90 | 76 | 79
-
Lucy | 100 | 90 | 85
-
Lily | 95 | 81 | 84
-
David | 100 | 86 | 89
-
(4 rows)
-
-
- Time: 2.059 ms
3、用PostgreSQL 自身的聚合函数实现
点击(此处)折叠或打开
-
t_girl=# select name,split_part(split_part(tmp,‘,‘,1),‘:‘,2) as "English",
-
t_girl-# split_part(split_part(tmp,‘,‘,2),‘:‘,2) as "Physics",
-
t_girl-# split_part(split_part(tmp,‘,‘,3),‘:‘,2) as "Math"
-
t_girl-# from
-
t_girl-# (
-
t_girl(# select name,string_agg(subject||‘:‘||score,‘,‘) as tmp from score group by name order by name desc
-
t_girl(# ) as T;
-
name | English | Physics | Math
-
-------+---------+---------+------
-
Simon | 90 | 76 | 79
-
Lucy | 100 | 90 | 85
-
Lily | 95 | 81 | 84
-
David | 100 | 86 | 89
-
(4 rows)
-
-
- Time: 2.396 ms
4、 存储函数实现
点击(此处)折叠或打开
-
create or replace function func_ytt_crosstab_py ()
-
returns setof ytt_crosstab
-
as
-
$ytt$
-
for row in plpy.cursor("select name,string_agg(subject||‘:‘||score,‘,‘) as tmp from score group by name order by name desc"):
-
a = row[‘tmp‘].split(‘,‘)
-
yield (row[‘name‘],a[0].split(‘:‘)[1],a[1].split(‘:‘)[1],a[2].split(‘:‘)[1])
-
$ytt$ language plpythonu;
-
-
-
t_girl=# select name,english,physics,math from func_ytt_crosstab_py();
-
name | english | physics | math
-
-------+---------+---------+------
-
Simon | 90 | 76 | 79
-
Lucy | 100 | 90 | 85
-
Lily | 95 | 81 | 84
-
David | 100 | 86 | 89
-
(4 rows)
-
-
- Time: 2.687 ms
5、 用PLPGSQL来实现
点击(此处)折叠或打开
-
t_girl=# create type ytt_crosstab as (name text, English text, Physics text, Math text);
-
CREATE TYPE
-
Time: 22.518 ms
-
-
-
create or replace function func_ytt_crosstab ()
-
returns setof ytt_crosstab
-
as
-
$ytt$
-
declare v_name text := ‘‘;
-
v_english text := ‘‘;
-
v_physics text := ‘‘;
-
v_math text := ‘‘;
-
v_tmp_result text := ‘‘;
-
declare cs1 cursor for select name,string_agg(subject||‘:‘||score,‘,‘) from score group by name order by name desc;
-
begin
-
open cs1;
-
loop
-
fetch cs1 into v_name,v_tmp_result;
-
exit when not found;
-
v_english = split_part(split_part(v_tmp_result,‘,‘,1),‘:‘,2);
-
v_physics = split_part(split_part(v_tmp_result,‘,‘,2),‘:‘,2);
-
v_math = split_part(split_part(v_tmp_result,‘,‘,3),‘:‘,2);
-
return query select v_name,v_english,v_physics,v_math;
-
end loop;
-
end;
-
$ytt$ language plpgsql;
-
-
-
t_girl=# select name,English,Physics,Math from func_ytt_crosstab();
-
name | english | physics | math
-
-------+---------+---------+------
-
Simon | 90 | 76 | 79
-
Lucy | 100 | 90 | 85
-
Lily | 95 | 81 | 84
-
David | 100 | 86 | 89
-
(4 rows)
-
-
- Time: 2.127 ms
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。