Spark SQL1.3测试
Spark SQL 1.3
参考官方文档:Spark SQL and DataFrame Guide
概览介绍参考:平易近人、兼容并蓄——Spark SQL 1.3.0概览
DataFrame提供了
一条联结所有主流数据源并自动转化为可并行处理格式的渠道,通过它Spark能取悦大数据生态链上的所有玩家,无论是善用R的数据科学家,惯用SQL的商业分析师,还是在意效率和实时性的统计工程师。
以一个常见的场景 -- 日志解析为例,有时我们需要用到一些额外的结构化数据(比如做IP和地址的映射),通常这样的数据会存在MySQL,而访问的方式有两种:一是每个worker远程去检索数据库,弊端是耗费额外的网络I/O资源;二是使用JdbcRDD
的API转化为RDD格式,然后编写繁复的函数去实现检索,显然要写更多的代码。而现在Spark一行代码就能实现从MySQL到DataFrame
的转化,并且支持SQL查询。
在上一篇已经对文本格式进行测试,现在对hive hbase mysql oracle 以及临时表之间join查询做测试
1.访问mysql
除了JSON之外,DataFrame
现在已经能支持MySQL、Hive、HDFS、PostgreSQL等外部数据源,而对关系数据库的读取,是通过jdbc
实现的。
bin/spark-shell --driver-class-path ./lib/mysql-connector-java-5.1.24-bin.jar val sc = new org.apache.spark.SparkContext val sqlContext = new org.apache.spark.sql.SQLContext(sc) val jdbcDF = sqlContext.load("jdbc", Map("url" -> "jdbc:mysql://192.168.0.110:3306/hidata?user=root&password=123456", "dbtable" -> "loadinfo")) bin/spark-sql --driver-class-path ./lib/mysql-connector-java-5.1.24-bin.jar spark-sql> create temporary table jdbcmysql using org.apache.spark.sql.jdbc options(url "jdbc:mysql://192.168.0.110:3306/hidata?user=root&password=123456",dbtable "loadinfo") spark-sql>select * from jdbcmysql; //注意src是hive本来就存在的表,在spark sql中不用建立临时表,直接可以进行操作 //实现hive和mysql中表的联合查询 select * from src join jdbcmysql on (src.key=jdbcmysql.id);
2.访问Oracle
同理,但注意连接的URL不一样,也是试了好久
bin/spark-shell --driver-class-path ./lib/ojdbc6.jar val jdbcDF = sqlContext.load("jdbc", Map("url" -> "jdbc:oracle:thin:kang/[email protected]:1521:orcl", "dbtable" -> "TEST"))
Spark十八般武艺又可以派上用场了。
错误的URL:
val jdbcDF = sqlContext.load("jdbc", Map("url" -> "jdbc:oracle:thin:@192.168.0.110:1521:orcl&user=kang&password=123456", "dbtable" -> "TEST")) val jdbcDF = sqlContext.load("jdbc", Map("url" -> "jdbc:oracle:thin:@192.168.0.110:1521/orcl&user=kang&password=123456", "dbtable" -> "TEST"))
报错类型:看起来最像的解决办法,留着以后用
java.sql.SQLException: Io : NL Exception was generated错误解决(jdbc数据源问题)
解决Oracle ORA-12505, TNS:listener does not currently know of SID given in connect
第一种方式,会告知无法识别SID,其实在连接时将orcl&user=kang&password=123456都当做其SID,其实就接近了。一般平时用jdbc连接数据库,url user password都分开,学习一下这种方式^^
Oracle的JDBC url三种方式:这
1.普通SID方式 jdbc:oracle:thin:username/[email protected]:1521:SID 2.普通ServerName方式 jdbc:oracle:thin:username/password@//x.x.x.1:1522/ABCD 3.RAC方式 jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=x.x.x.1)(PORT=1521))(ADDRESS=(PROTOCOL=TCP)(HOST=x.x.x.2)(PORT=1521)))(LOAD_BALANCE=yes)(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=xxrac)))
具体参看这里
3.访问hive
hive和spark sql的关系,参见
其实spark sql从一开始就支持hive。Spark提供了一个HiveContext
的上下文,其实是SQLContext
的一个子类,但从作用上来说,sqlContext
也支持Hive数据源。只要在部署Spark的时候加入Hive选项,并把已有的hive-site.xml
文件挪到$SPARK_HOME/conf
路径下,我们就可以直接用Spark查询包含已有元数据的Hive表了。
1.Spark-sql方式
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
配置步骤:
1. 将Hive的conf目录的hive-site.xml拷贝到Spark的conf目录
2. 将hive-site.xml中关于时间的配置的时间单位,比如ms,s全部删除掉
错误信息:Exception in thread "main" java.lang.RuntimeException: java.lang.NumberFormatException: For input string: "5s" 一直以为是输入格式的问题。。
3. 将mysql jdbc的驱动添加到Spark的Classpath上
export SPARK_CLASSPATH=$SPARK_CLASSPATH:/home/hadoop/software/spark-1.2.0-bin-hadoop2.4/lib/mysql-connector-java-5.1.34.jar
[hadoop@hadoop bin]$ ./spark-sql Spark assembly has been built with Hive, including Datanucleus jars on classpath SET spark.sql.hive.version=0.13.1
提示编译的时候要带2个参数
重新编译:./make-distribution.sh --tgz -Phadoop-2.4 -Pyarn -DskipTests -Dhadoop.version=2.4.1 -Phive -Phive-thriftserver
在Spark-default中已经指定
创建表
spark-sql> create table word6 (id int,word string) row format delimited fields terminated by ‘,‘ stored as textfile ; OK Time taken: 10.852 seconds
导入数据
spark-sql> load data local inpath ‘/home/hadoop/word.txt‘ into table word6; Copying data from file:/home/hadoop/word.txt Copying file: file:/home/hadoop/word.txt Loading data to table default.word6 Table default.word6 stats: [numFiles=1, numRows=0, totalSize=31, rawDataSize=0] OK Time taken: 2.307 seconds
与其他数据源联合查询
select * from src join jdbcmysql on (src.key=jdbcmysql.id);
2.Spark-shell方式
sqlContext.sql("select count(*) from hive_people").show()
4.将dataframe数据写入Hive分区表
DataFrame将数据写入hive中时,默认的是hive默认数据库,insertInto没有指定数据库的参数,使用下面方式将数据写入hive表或者hive表的分区中。这
1、将DataFrame数据写入到Hive表中
从DataFrame类中可以看到与hive表有关的写入Api有以下几个:
registerTempTable(tableName: String): Unit, insertInto(tableName: String): Unit insertInto(tableName: String, overwrite: Boolean): Unit saveAsTable(tableName: String, source: String, mode: [size=13.3333320617676px]SaveMode, options: Map[String, String]): Unit
还有很多重载函数,不一一列举
registerTempTable函数是创建spark临时表
insertInto函数是向表中写入数据,可以看出此函数不能指定数据库和分区等信息,不可以直接进行写入。
向hive数据仓库写入数据必须指定数据库,hive数据表建立可以在hive上建立,或者使用hiveContext.sql(“create table ....")
下面语句是向指定数据库数据表中写入数据:
case class Person(name:String,col1:Int,col2:String) val sc = new org.apache.spark.SparkContext val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc) import hiveContext.implicits._ hiveContext.sql("use DataBaseName") val data=sc.textFile("path").map(x=>x.split("\\s+")).map(x=>Person(x(0),x(1).toInt,x(2)))
data.toDF() insertInto("tableName")
创建一个case类将RDD中数据类型转为case类型,然后通过toDF转换为DataFrame,调用insertInto函数时,首先指定数据库,使用的是hiveContext.sql("use DataBaseName")语句,就可以将DataFrame数据写入hive数据表中了
2、将DataFrame数据写入hive指定数据表的分区中
hive数据表建立可以在hive上建立,或者使用hiveContext.sql(“create table ...."),使用saveAsTable时数据存储格式有限,默认格式为parquet,可以指定为json,如果有其他格式指定,尽量使用语句来建立hive表。
将数据写入分区表的思路是:首先将DataFrame数据写入临时表,之后是由hiveContext.sql语句将数据写入hive分区表中。具体操作如下:
case class Person(name:String,col1:Int,col2:String) val sc = new org.apache.spark.SparkContext val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc) import hiveContext.implicits._ hiveContext.sql("use DataBaseName") val data = sc.textFile("path").map(x=>x.split("\\s+")).map(x=>Person(x(0),x(1).toInt,x(2))) data.toDF().registerTempTable("table1") hiveContext.sql("insert into table2 partition(date=‘2015-04-02‘) select name,col1,col2 from table1")
使用以上方式就可以将dataframe数据写入hive分区表了。
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。