volley源码解析(四)--CacheDispatcher从缓存中获取数据
从上一篇文章我们已经知道,现在要处理的问题就是CacheDispatcher和NetworkDispatcher怎么分别去缓存和网络获取数据的问题,这两个问题我分开来讲。
但是首先说明的是,这两个问题其实是有联系的,当CacheDispatcher获取不到缓存的时候,会将request放入网络请求队列,从而让NetworkDispatcher去处理它;
而当NetworkDispatcher获得数据以后,又会将数据缓存,下次CacheDispatcher就可以从缓存中获得数据了。
这篇文章,就让我们先来了解volley是怎么从缓存中获取数据的。
第一个要说明的,当然是CacheDispatcher类,这个类本质是一个线程,作用就是根据request从缓存中获取数据
我们先来看它的构造方法
/** * Creates a new cache triage dispatcher thread. You must call {@link #start()} * in order to begin processing. * 创建一个调度线程 * @param cacheQueue Queue of incoming requests for triage * @param networkQueue Queue to post requests that require network to * @param cache Cache interface to use for resolution * @param delivery Delivery interface to use for posting responses */ public CacheDispatcher( BlockingQueue<Request<?>> cacheQueue, BlockingQueue<Request<?>> networkQueue, Cache cache, ResponseDelivery delivery) { mCacheQueue = cacheQueue;//缓存请求队列 mNetworkQueue = networkQueue;//网络请求队列 mCache = cache;//缓存 mDelivery = delivery;//响应分发器 }从上面的方法看出,CacheDispatcher持有缓存队列cacheQueue,目的当然是为了从队列中获取东西。
而同时持有网络队列networkQueue,目的是为了在缓存请求失败后,将request放入网络队列中。
至于响应分发器delivery是成功请求缓存以后,将响应分发给对应请求的,分发器存在的目的我已经在前面的文章中说过几次了,就是为了灵活性和在主线程更新UI(至于怎么做到,我们以后会讲)
最后是一个缓存类cache,这个cache可以看成是缓存的代表,也就是说它就是缓存,是面向对象思想的体现,至于它是怎么实现的,等下会说明
看完构造方法,我们就直奔对Thread而言,最重要的run()方法
@Override public void run() { if (DEBUG) VolleyLog.v("start new dispatcher"); Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);//设置线程优先级 // Make a blocking call to initialize the cache. mCache.initialize();//初始化缓存对象 while (true) { try { // Get a request from the cache triage queue, blocking until // at least one is available. // 从缓存队列中取出请求 final Request<?> request = mCacheQueue.take(); request.addMarker("cache-queue-take"); // If the request has been canceled, don't bother dispatching it. if (request.isCanceled()) {//是否取消请求 request.finish("cache-discard-canceled"); continue; } // Attempt to retrieve this item from cache. Cache.Entry entry = mCache.get(request.getCacheKey());//获取缓存 if (entry == null) { request.addMarker("cache-miss"); // Cache miss; send off to the network dispatcher. mNetworkQueue.put(request);//如果没有缓存,放入网络请求队列 continue; } // If it is completely expired, just send it to the network. if (entry.isExpired()) {//如果缓存超时 request.addMarker("cache-hit-expired"); request.setCacheEntry(entry); mNetworkQueue.put(request); continue; } // We have a cache hit; parse its data for delivery back to the request. request.addMarker("cache-hit"); Response<?> response = request.parseNetworkResponse(//解析响应 new NetworkResponse(entry.data, entry.responseHeaders)); request.addMarker("cache-hit-parsed"); if (!entry.refreshNeeded()) {//不需要更新缓存 // Completely unexpired cache hit. Just deliver the response. mDelivery.postResponse(request, response); } else { // Soft-expired cache hit. We can deliver the cached response, // but we need to also send the request to the network for // refreshing. request.addMarker("cache-hit-refresh-needed"); request.setCacheEntry(entry); // Mark the response as intermediate. response.intermediate = true; // Post the intermediate response back to the user and have // the delivery then forward the request along to the network. mDelivery.postResponse(request, response, new Runnable() { @Override public void run() { try { mNetworkQueue.put(request); } catch (InterruptedException e) { // Not much we can do about this. } } }); } } catch (InterruptedException e) { // We may have been interrupted because it was time to quit. if (mQuit) { return; } continue; } } }这个方法里面做了很多事情,我们按顺序看
1,从缓存请求队列中取出request
2,判断这个request已经是否被取消,如果是,调用它的finish()方法,continue
3,否则,利用Cache获得缓存,获得缓存的依据是request.getCacheKey(),也就是request的url
4,如果缓存不存在,将request放入mNetworkQueue,continue
5,否则,检查缓存是否过期,是,同样将request放入mNetworkQueue,continue
6,否则,检查是否希望更新缓存,否,组装成response交给分发器mDelivery
7,否则组装成response交给分发器mDelivery,并且将request再加入mNetworkQueue,去网络请求更新
OK,上面的过程已经说得够清楚了。让人疑惑的很重要一步,就是Cache这个类到底是怎么获取缓存数据的,下面我们就来看看Cache这个类。
这个Cache其实是一个接口(面向抽象编程的思想),而它的具体实现,我们在第一篇文章的Volley类中看到,是DiskBasedCache类。
无论如何,我们先看接口
/** * An interface for a cache keyed by a String with a byte array as data. * 缓存接口 */ public interface Cache { /** * Retrieves an entry from the cache. * @param key Cache key * @return An {@link Entry} or null in the event of a cache miss */ public Entry get(String key); /** * Adds or replaces an entry to the cache. * @param key Cache key * @param entry Data to store and metadata for cache coherency, TTL, etc. */ public void put(String key, Entry entry); /** * Performs any potentially long-running actions needed to initialize the cache; * will be called from a worker thread. * 初始化 */ public void initialize(); /** * Invalidates an entry in the cache. * @param key Cache key * @param fullExpire True to fully expire the entry, false to soft expire */ public void invalidate(String key, boolean fullExpire); /** * Removes an entry from the cache. * @param key Cache key */ public void remove(String key); /** * Empties the cache. */ public void clear(); /** * Data and metadata for an entry returned by the cache. * 缓存数据和元数据记录类 */ public static class Entry { /** * The data returned from cache. * 缓存数据 */ public byte[] data; /** * ETag for cache coherency. * 统一的缓存标志 */ public String etag; /** * Date of this response as reported by the server. * 响应日期 */ public long serverDate; /** * The last modified date for the requested object. * 最后修改日期 */ public long lastModified; /** * TTL for this record. * Time To Live 生存时间 */ public long ttl; /** Soft TTL for this record. */ public long softTtl; /** * Immutable response headers as received from server; must be non-null. * 响应头,必须为非空 */ public Map<String, String> responseHeaders = Collections.emptyMap(); /** * True if the entry is expired. * 是否超时 */ public boolean isExpired() { return this.ttl < System.currentTimeMillis(); } /** * True if a refresh is needed from the original data source. * 缓存是否需要更新 */ public boolean refreshNeeded() { return this.softTtl < System.currentTimeMillis(); } } }作为接口,Cache规定了缓存初始化,存取等必须的方法让子类去继承。
比较重要的是,其内部有一个Entry静态内部类,这个类Entry可以理解成一条缓存记录,也就是说每个Entry就代表一条缓存记录。
这么一说,上面run()方法里面的代码就比较好理解了,我们就知道,为什么Cache获取的缓存,叫做Entry。
然后我们来看DiskBasedCache,从名字上知道,这个类是硬盘缓存的意思
在这里我们注意到,volley其实只提供了硬盘缓存而没有内存缓存的实现,这可以说是它的不足,也可以说它作为一个扩展性很强的框架,是留给使用者自己实现的空间。如果我们需要内存缓存,我们大可自己写一个类继承Cache接口。
在这之前,我们先来看volley是怎么实现硬盘缓存的
首先是构造函数
/** * Constructs an instance of the DiskBasedCache at the specified directory. * @param rootDirectory The root directory of the cache. * @param maxCacheSizeInBytes The maximum size of the cache in bytes. */ public DiskBasedCache(File rootDirectory, int maxCacheSizeInBytes) { mRootDirectory = rootDirectory; mMaxCacheSizeInBytes = maxCacheSizeInBytes; } /** * Constructs an instance of the DiskBasedCache at the specified directory using * the default maximum cache size of 5MB. * @param rootDirectory The root directory of the cache. */ public DiskBasedCache(File rootDirectory) { this(rootDirectory, DEFAULT_DISK_USAGE_BYTES); }
这个函数传入了两个参数,一个是指缓存根目录,一个是指缓存的最大值
存取缓存,必须有存取方法,我们先从put方法看起
/** * Puts the entry with the specified key into the cache. * 存储缓存 */ @Override public synchronized void put(String key, Entry entry) { pruneIfNeeded(entry.data.length);//修改当前缓存大小使之适应最大缓存大小 File file = getFileForKey(key); try { FileOutputStream fos = new FileOutputStream(file); CacheHeader e = new CacheHeader(key, entry);//缓存头,保存缓存的信息在内存 boolean success = e.writeHeader(fos);//写入缓存头 if (!success) { fos.close(); VolleyLog.d("Failed to write header for %s", file.getAbsolutePath()); throw new IOException(); } fos.write(entry.data);//写入数据 fos.close(); putEntry(key, e); return; } catch (IOException e) { } boolean deleted = file.delete(); if (!deleted) { VolleyLog.d("Could not clean up file %s", file.getAbsolutePath()); } }
这个方法一看比较复杂,我先来说明一下主要的存储过程
1,检查要缓存的数据的长度,如果当前已经缓存的数据大小mTotalSize加上要缓存的数据大小,大于缓存最大值mMaxCacheSizeInBytes,则要将旧的缓存文件删除,以腾出空间来存储新的缓存文件
2,根据缓存记录类Entry,提取Entry除了数据以外的其他信息,例如这个缓存的大小,过期时间,写入日期等,并且将这些信息实例成CacheHeader,。这样做的目的是,方便以后我们查询缓存,获得缓存相应信息时,不需要去读取硬盘,因为CacheHeader是内存中的。
3,写入缓存
根据上面步奏,我们来读pruneIfNeeded()方法,这个方法就是完成了步奏1的工作,主要思路是不断删除文件,直到腾出足够的空间给新的缓存文件
/** * Prunes the cache to fit the amount of bytes specified. * 修剪缓存大小,去适应规定的缓存比特数 * @param neededSpace The amount of bytes we are trying to fit into the cache. */ private void pruneIfNeeded(int neededSpace) { if ((mTotalSize + neededSpace) < mMaxCacheSizeInBytes) {//如果没有超过最大缓存大小,返回 return; } if (VolleyLog.DEBUG) { VolleyLog.v("Pruning old cache entries."); } long before = mTotalSize; int prunedFiles = 0; long startTime = SystemClock.elapsedRealtime(); Iterator<Map.Entry<String, CacheHeader>> iterator = mEntries.entrySet().iterator(); while (iterator.hasNext()) {//遍历缓存文件信息 Map.Entry<String, CacheHeader> entry = iterator.next(); CacheHeader e = entry.getValue(); boolean deleted = getFileForKey(e.key).delete(); if (deleted) {//删除文件 mTotalSize -= e.size; } else { VolleyLog.d("Could not delete cache entry for key=%s, filename=%s", e.key, getFilenameForKey(e.key)); } iterator.remove(); prunedFiles++; if ((mTotalSize + neededSpace) < mMaxCacheSizeInBytes * HYSTERESIS_FACTOR) { break; } } if (VolleyLog.DEBUG) { VolleyLog.v("pruned %d files, %d bytes, %d ms", prunedFiles, (mTotalSize - before), SystemClock.elapsedRealtime() - startTime); } }在这个方法中,我们注意到有一个mEntries,我们看一下它的声明
/** * Map of the Key, CacheHeader pairs * 缓存记录表,用于记录所有的缓存文件信息 * 使用LRU算法 */ private final Map<String, CacheHeader> mEntries = new LinkedHashMap<String, CacheHeader>(16, .75f, true);也就是说它实则保存了所有缓存的头信息CacheHeader,而且在map中,这些信息是按照LRU算法排列的,LRU算法是LinkedHashMap的内置算法。
每次存取缓存,都会修改这个map,也就是说要调用LRU算法进行重新排序,这样造成一定效率的下降,但貌似也没有更好的方法。
然后就是第二步,根据Entry生成CacheHeader,我们来看一下CacheHeader这个内部类
/** * Handles holding onto the cache headers for an entry. * 缓存基本信息类 */ // Visible for testing. static class CacheHeader { /** The size of the data identified by this CacheHeader. (This is not * serialized to disk. * 缓存数据大小 * */ public long size; /** * The key that identifies the cache entry. * 缓存键值 */ public String key; /** ETag for cache coherence. */ public String etag; /** * Date of this response as reported by the server. * 保存日期 */ public long serverDate; /** * The last modified date for the requested object. * 上次修改时间 */ public long lastModified; /** * TTL for this record. * 生存时间 */ public long ttl; /** Soft TTL for this record. */ public long softTtl; /** * Headers from the response resulting in this cache entry. * 响应头 */ public Map<String, String> responseHeaders; private CacheHeader() { } /** * Instantiates a new CacheHeader object * @param key The key that identifies the cache entry * @param entry The cache entry. */ public CacheHeader(String key, Entry entry) { this.key = key; this.size = entry.data.length; this.etag = entry.etag; this.serverDate = entry.serverDate; this.lastModified = entry.lastModified; this.ttl = entry.ttl; this.softTtl = entry.softTtl; this.responseHeaders = entry.responseHeaders; } /** * Reads the header off of an InputStream and returns a CacheHeader object. * 读取缓存头信息 * @param is The InputStream to read from. * @throws IOException */ public static CacheHeader readHeader(InputStream is) throws IOException { CacheHeader entry = new CacheHeader(); int magic = readInt(is); if (magic != CACHE_MAGIC) { // don't bother deleting, it'll get pruned eventually throw new IOException(); } entry.key = readString(is); entry.etag = readString(is); if (entry.etag.equals("")) { entry.etag = null; } entry.serverDate = readLong(is); entry.lastModified = readLong(is); entry.ttl = readLong(is); entry.softTtl = readLong(is); entry.responseHeaders = readStringStringMap(is); return entry; } /** * Creates a cache entry for the specified data. */ public Entry toCacheEntry(byte[] data) { Entry e = new Entry(); e.data = data; e.etag = etag; e.serverDate = serverDate; e.lastModified = lastModified; e.ttl = ttl; e.softTtl = softTtl; e.responseHeaders = responseHeaders; return e; } /** * Writes the contents of this CacheHeader to the specified OutputStream. * 写入缓存头 */ public boolean writeHeader(OutputStream os) { try { writeInt(os, CACHE_MAGIC); writeString(os, key); writeString(os, etag == null ? "" : etag); writeLong(os, serverDate); writeLong(os, lastModified); writeLong(os, ttl); writeLong(os, softTtl); writeStringStringMap(responseHeaders, os); os.flush(); return true; } catch (IOException e) { VolleyLog.d("%s", e.toString()); return false; } } }应该说没有什么特别的,其实就是把Entry类里面的,出来data以外的信息提取出来而已。
另外还增加了两个读写方法,readHeader(InputStream is)和writeHeader(OutputStream os)
从这两个方法可以知道,对于一个缓存文件来说,前面是关于这个缓存的一些信息,然后才是真正的缓存数据。
最后一步,写入缓存数据,将CacheHeader添加到map
fos.write(entry.data);//写入数据 fos.close(); putEntry(key, e);OK,到此为止,写入就完成了。那么读取,就是写入的逆过程而已。
/** * Returns the cache entry with the specified key if it exists, null otherwise. * 查询缓存 */ @Override public synchronized Entry get(String key) { CacheHeader entry = mEntries.get(key); // if the entry does not exist, return. if (entry == null) { return null; } File file = getFileForKey(key);//获取缓存文件 CountingInputStream cis = null; try { cis = new CountingInputStream(new FileInputStream(file)); CacheHeader.readHeader(cis); // eat header读取头部 byte[] data = streamToBytes(cis, (int) (file.length() - cis.bytesRead));//去除头部长度 return entry.toCacheEntry(data); } catch (IOException e) { VolleyLog.d("%s: %s", file.getAbsolutePath(), e.toString()); remove(key); return null; } catch (NegativeArraySizeException e) { VolleyLog.d("%s: %s", file.getAbsolutePath(), e.toString()); remove(key); return null; } finally { if (cis != null) { try { cis.close(); } catch (IOException ioe) { return null; } } } }读取过程很简单
1,读取缓存文件头部
2,读取缓存文件数据
3,生成Entry,返回
相信大家都可以看懂,因为真的没有那么复杂,我就不再累述了。
get(),put()方法看过以后,其实DiskBasedCache类还有一些public方法,例如缓存信息map的初始化,例如删除所有缓存文件的方法,这些都比较简单,基本上就是利用get,put方法里面的函数就可以完成,我也不再贴出代码来说明了。
DiskBasedCache给大家讲解完毕,整个从缓存中获取数据的过程,相信也说得很清楚。
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。