Linux 设备模型之 kobject 内嵌结构
问题描述:前文我们知道了/sys是包含内核和驱动的实施信息的,用户可以通过 /sys 这个接口,用户通过这个接口可以一览内核设备的全貌。本文将从Linux内核的角度来看一看这个设备模型是如何构建的。
1、kobject 结构
在Linux内核里,kobject是组成Linux设备模型的基础,一个kobject对应sysfs里的一个目录。从面向对象的角度来说,kobject可以看作是所有设备对象的基类,因为C语言并没有面向对象的语法,所以一般是把kobject内嵌到其他结构体里来实现类似的作用,这里的其他结构体可以看作是kobject的派生类。Kobject为Linux设备模型提供了很多有用的功能,比如引用计数,接口抽象,父子关系等等。引用计数本质上就是利用kref实现的。
另外,Linux设备模型还有一个重要的数据结构kset。Kset本身也是一个kobject,所以它在sysfs里同样表现为一个目录,但它和kobject的不同之处在于kset可以看作是一个容器,如果你把它类比为C++里的容器类如list也无不可。Kset之所以能作为容器来使用,其内部正是内嵌了一个双向链表结构struct list_head。
kobject 在内核中的描述
struct kobject { const char *name; struct list_head entry; struct kobject *parent; struct kset *kset; struct kobj_type *ktype; struct sysfs_dirent *sd; struct kref kref; unsigned int state_initialized:1; unsigned int state_in_sysfs:1; unsigned int state_add_uevent_sent:1; unsigned int state_remove_uevent_sent:1; unsigned int uevent_suppress:1; };
内核里的设备之间是以树状形式组织的,在这种组织架构里比较靠上层的节点可以看作是下层节点的父节点,反映到sysfs里就是上级目录和下级目录之间的关系,在内核里,正是kobject帮助我们实现这种父子关系。在kobject的定义里,name表示的是kobject在sysfs中的名字;指针parent用来指向kobject的父对象;Kref大家应该比较熟悉了,kobject通过它来实现引用计数;Kset指针用来指向这个kobject所属的kset,下文会再详细描述kset的用法;对于ktype,如果只是望文生义的话,应该是用来描述kobject的类型信息。Ktype的定义如下:
struct kobj_type { void (*release)(struct kobject *kobj); const struct sysfs_ops *sysfs_ops; struct attribute **default_attrs; };函数指针release是给kref使用的,当引用计数为0这个指针指向的函数会被调用来释放内存。sysfs_ops和attribute是做什么用的呢?前文里提到,一个kobject对应sysfs里的一个目录,而目录下的文件就是由sysfs_ops和attribute来实现的,其中,attribute定义了kobject的属性,在sysfs里对应一个文件,sysfs_ops用来定义读写这个文件的方法。Ktype里的attribute是默认的属性,另外也可以使用更加灵活的手段,本文的重点还是放在default attribute。
#include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/kobject.h> struct my_kobj { //内嵌kobject的结构 int val; struct kobject kobj; }; struct my_kobj *obj1, *obj2; struct kobj_type my_type; struct attribute name_attr = { .name = "name", //文件名 .mode = 0444, //指定文件的访问权限 }; struct attribute val_attr = { .name = "val", //文件名 .mode = 0666, //指定文件的访问权限 }; struct attribute *my_attrs[] = { &name_attr, &val_attr, NULL, }; /* 结构体struct attribute里的name变量用来指定文件名,mode变量用来指定文件的访问权限。 这里需要着重指出的是,数组my_attrs的最后一项一定要赋为NULL,否则会造成内核oops。 */ ssize_t my_show(struct kobject *kobj, struct attribute *attr, char *buffer) { struct my_kobj *obj = container_of(kobj, struct my_kobj, kobj); ssize_t count = 0; if (strcmp(attr->name, "name") == 0) { count = sprintf(buffer, "%s\n", kobject_name(kobj)); } else if (strcmp(attr->name, "val") == 0) { count = sprintf(buffer, "%d\n", obj->val); } return count; } ssize_t my_store(struct kobject *kobj, struct attribute *attr, const char *buffer, size_t size) { struct my_kobj *obj = container_of(kobj, struct my_kobj, kobj); if (strcmp(attr->name, "val") == 0) { sscanf(buffer, "%d", &obj->val); } return size; } struct sysfs_ops my_sysfsops = { .show = my_show, .store = my_store, }; void obj_release(struct kobject *kobj) { struct my_kobj *obj = container_of(kobj, struct my_kobj, kobj); printk(KERN_INFO "obj_release %s\n", kobject_name(&obj->kobj)); kfree(obj); } static int __init mykobj_init(void) { printk(KERN_INFO "mykobj_init\n"); obj1 = kzalloc(sizeof(struct my_kobj), GFP_KERNEL); //分配obj1和obj2并赋值 if (!obj1) { return -ENOMEM; } obj1->val = 1; obj2 = kzalloc(sizeof(struct my_kobj), GFP_KERNEL); if (!obj2) { kfree(obj1); return -ENOMEM; } obj2->val = 2; my_type.release = obj_release; my_type.default_attrs = my_attrs; my_type.sysfs_ops = &my_sysfsops; kobject_init_and_add(&obj1->kobj, &my_type, NULL, "mykobj1"); /*函数来初始化kobject并把它加入到设备模型的体系架构*/ kobject_init_and_add(&obj2->kobj, &my_type, &obj1->kobj, "mykobj2"); /* kobject_init用来初始化kobject结构,kobject_add用来把kobj加入到设备模型之中。 在实作中,我们先对obj1进行初始化和添加的动作,调用参数里,parent被赋为NULL,表示obj1没有父对象,反映到sysfs里, my_kobj1的目录会出现在/sys下,obj2的父对象设定为obj1,那么my_kobj2的目录会出现在/sys/my_kobj1下面。 前面提到,kobject也提供了引用计数的功能,虽然本质上是利用kref,但也提供了另外的接口供用户使用。 kobject_init_and_add和kobject_init这两个函数被调用后,kobj的引用计数会初始化为1, 所以在module_exit时要记得用kobject_put来释放引用计数。 */ return 0; } static void __exit mykobj_exit(void) { printk(KERN_INFO "mykobj_exit\n"); kobject_del(&obj2->kobj); /*先子对象,后父对象*/ kobject_put(&obj2->kobj); kobject_del(&obj1->kobj); kobject_put(&obj1->kobj); return; } /* kobject_del的作用是把kobject从设备模型的那棵树里摘掉,同时sysfs里相应的目录也会删除。 这里需要指出的是,释放的顺序应该是先子对象,后父对象。 因为kobject_init_and_add和kobject_add这两个函数会调用kobject_get来增加父对象的引用计数, 所以kobject_del需要调用kobject_put来减少父对象的引用计数。在本例中,如果先通过kobject_put来释放obj1, 那kobject_del(&obj2->kobj)就会出现内存错误。 */ module_init(mykobj_init); module_exit(mykobj_exit); MODULE_LICENSE("GPL");
源代码下载
2、结构改进
在这个实作中,我们建立了两个对象obj1和obj2,obj1是obj2的父对象,如果推广开来,obj1可以有更多的子对象。在Linux内核中,这种架构方式其实并无太大的实际价值,有限的用处之一是在sysfs里创建子目录(Linux内核里有这种用法,这种情况下,直接调用内核提供的kobject_create来实现,不需要自定义数据结构并内嵌kobject),而且,创建子目录也是有其他的办法的。我们知道,Linux设备模型最初的目的是为了方便电源管理,这就需要从上到下的遍历,在这种架构里,通过obj1并无法访问其所有的子对象。这个实作最大的意义在于可以让我们比较清晰的理解kobject如何使用。通常情况下,kobject只需要在叶节点里使用,上层的节点要使用kset。
struct kset { struct list_head list; spinlock_t list_lock; struct kobject kobj; const struct kset_uevent_ops *uevent_ops; };Kset结构里的kobj表明它也是一个kobject,list变量用来组织它所有的子对象。
<span style="font-family:Microsoft YaHei;font-size:12px;">#include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/kobject.h> struct my_kobj { //内嵌kobject的结构 int val; struct kobject kobj; }; struct my_kobj *obj1, *obj2; struct kset *my_kset; struct kobj_type my_type; struct attribute name_attr = { .name = "name", //文件名 .mode = 0444, //指定文件的访问权限 }; struct attribute val_attr = { .name = "val", //文件名 .mode = 0666, //指定文件的访问权限 }; struct attribute *my_attrs[] = { &name_attr, &val_attr, NULL, }; /* 结构体struct attribute里的name变量用来指定文件名,mode变量用来指定文件的访问权限。 这里需要着重指出的是,数组my_attrs的最后一项一定要赋为NULL,否则会造成内核oops。 */ ssize_t my_show(struct kobject *kobj, struct attribute *attr, char *buffer) { struct my_kobj *obj = container_of(kobj, struct my_kobj, kobj); ssize_t count = 0; if (strcmp(attr->name, "name") == 0) { count = sprintf(buffer, "%s\n", kobject_name(kobj)); } else if (strcmp(attr->name, "val") == 0) { count = sprintf(buffer, "%d\n", obj->val); } return count; } ssize_t my_store(struct kobject *kobj, struct attribute *attr, const char *buffer, size_t size) { struct my_kobj *obj = container_of(kobj, struct my_kobj, kobj); if (strcmp(attr->name, "val") == 0) { sscanf(buffer, "%d", &obj->val); } return size; } struct sysfs_ops my_sysfsops = { .show = my_show, .store = my_store, }; void obj_release(struct kobject *kobj) { struct my_kobj *obj = container_of(kobj, struct my_kobj, kobj); printk(KERN_INFO "obj_release %s\n", kobject_name(&obj->kobj)); kfree(obj); } static int __init mykset_init(void) { printk(KERN_INFO "mykset_init\n"); my_kset = kset_create_and_add("my_kset", NULL, NULL); if (!my_kset) { return -ENOMEM; } obj1 = kzalloc(sizeof(struct my_kobj), GFP_KERNEL); if (!obj1) { kset_unregister(my_kset); return -ENOMEM; } obj1->val = 1; obj2 = kzalloc(sizeof(struct my_kobj), GFP_KERNEL); if (!obj2) { kset_unregister(my_kset); kfree(obj1); return -ENOMEM; } obj2->val = 2; obj1->kobj.kset = my_kset; obj2->kobj.kset = my_kset; my_type.release = obj_release; my_type.default_attrs = my_attrs; my_type.sysfs_ops = &my_sysfsops; kobject_init_and_add(&obj1->kobj, &my_type, NULL, "mykobj1");/*函数来初始化kobject并把它加入到设备模型的体系架构*/ kobject_init_and_add(&obj2->kobj, &my_type, NULL, "mykobj2"); /* kobject_init用来初始化kobject结构,kobject_add用来把kobj加入到设备模型之中。 在实作中,我们先对obj1进行初始化和添加的动作,调用参数里,parent被赋为NULL,表示obj1没有父对象,反映到sysfs里, my_kobj1的目录会出现在/sys下,obj2的父对象设定为obj1,那么my_kobj2的目录会出现在/sys/my_kobj1下面。 前面提到,kobject也提供了引用计数的功能,虽然本质上是利用kref,但也提供了另外的接口供用户使用。 kobject_init_and_add和kobject_init这两个函数被调用后,kobj的引用计数会初始化为1, 所以在module_exit时要记得用kobject_put来释放引用计数。 */ return 0; } static void __exit mykset_exit(void) { printk(KERN_INFO "mykset_exit\n"); kobject_del(&obj1->kobj);/*先子对象,后父对象*/ kobject_put(&obj1->kobj); kobject_del(&obj2->kobj); kobject_put(&obj2->kobj); kset_unregister(my_kset); return; } /* kobject_del的作用是把kobject从设备模型的那棵树里摘掉,同时sysfs里相应的目录也会删除。 这里需要指出的是,释放的顺序应该是先子对象,后父对象。 因为kobject_init_and_add和kobject_add这两个函数会调用kobject_get来增加父对象的引用计数, 所以kobject_del需要调用kobject_put来减少父对象的引用计数。在本例中,如果先通过kobject_put来释放obj1, 那kobject_del(&obj2->kobj)就会出现内存错误。 */ module_init(mykset_init); module_exit(mykset_exit); MODULE_LICENSE("GPL"); </span>
在module_init里,我们首先调用kset_create_and_add创建my_kset,接下来把my_kset赋给obj1和obj2,最后调用kobject_init_and_add来添加obj1和obj2。这里需要注意的是,kobject_init_and_add参数里的parent都是NULL,在这种情况下,obj1和obj2的父对象由kobject结构里的kset指针决定,在这个实作里就是my_kset。在module_exit里,我们还需要额外调用kset_unregister来释放之前创建的my_kset.
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。