《Linux内核分析》 week6作业-Linux内核fork()系统调用的创建过程

  一.进程控制块PCB-stack_struct

 进程在操作系统中都有一个结构,用于表示这个进程。这就是进程控制块(PCB),在Linux中具体实现是task_struct数据结构,它主要记录了以下信息:

  •  状态信息,例如可执行状态、就绪状态、阻塞状态等。
  •  性质,由于unix有很多变种,进行有自己独特的性质。
  •  资源,资源的链接比如内存,还有资源的限制和权限等。
  •  组织,例如按照家族关系建立起来的树(父进程、子进程等)。

 

task_struct结构体内容非常庞大,暂时没有去分析源代码,以后有时间再去研究。

 

二.Linux fork执行的过程

   在menu中添加一个fork的系统调用,然后用gdb开始调试.执行以下命令

qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd rootfs.img -s -s
gdb
file linux-3.18.6/vmlinux
target remote:1234

  然后在sys_fork、sys_clone处设置断点,再逐步调试,观察fork系统调用的执行过程。

   技术分享

 

具体分析fork系统调用执行过程.

 1.fork、vfork和clone三个系统调用都可以创建一个新进程,而且它们都是通过调用do_fork来实现进程的创建,do_fork通过传递不同的clone_flags来实现fork、clone、vfork。

long do_fork(unsigned long clone_flags,
1624          unsigned long stack_start,
1625          unsigned long stack_size,
1626          int __user *parent_tidptr,
1627          int __user *child_tidptr)
1628{
1629    struct task_struct *p;
1630    int trace = 0;
1631    long nr;
1632
1633    /*
1634     * Determine whether and which event to report to ptracer.  When
1635     * called from kernel_thread or CLONE_UNTRACED is explicitly
1636     * requested, no event is reported; otherwise, report if the event
1637     * for the type of forking is enabled.
1638     */
1639    if (!(clone_flags & CLONE_UNTRACED)) {
1640        if (clone_flags & CLONE_VFORK)
1641            trace = PTRACE_EVENT_VFORK;
1642        else if ((clone_flags & CSIGNAL) != SIGCHLD)
1643            trace = PTRACE_EVENT_CLONE;
1644        else
1645            trace = PTRACE_EVENT_FORK;
1646
1647        if (likely(!ptrace_event_enabled(current, trace)))
1648            trace = 0;
1649    }
1650    
1651    p = copy_process(clone_flags, stack_start, stack_size,
1652             child_tidptr, NULL, trace);    #进程复制,核心函数
1653    /*
1654     * Do this prior waking up the new thread - the thread pointer
1655     * might get invalid after that point, if the thread exits quickly.
1656     */
1657    if (!IS_ERR(p)) {
1658        struct completion vfork;
1659        struct pid *pid;
1660
1661        trace_sched_process_fork(current, p);
1662
1663        pid = get_task_pid(p, PIDTYPE_PID);
1664        nr = pid_vnr(pid);
1665
1666        if (clone_flags & CLONE_PARENT_SETTID)
1667            put_user(nr, parent_tidptr);
1668
1669        if (clone_flags & CLONE_VFORK) {
1670            p->vfork_done = &vfork;
1671            init_completion(&vfork);
1672            get_task_struct(p);
1673        }
1674
1675        wake_up_new_task(p);
1676
1677        /* forking complete and child started to run, tell ptracer */
1678        if (unlikely(trace))
1679            ptrace_event_pid(trace, pid);
1680
1681        if (clone_flags & CLONE_VFORK) {
1682            if (!wait_for_vfork_done(p, &vfork))
1683                ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1684        }
1685
1686        put_pid(pid);
1687    } else {
1688        nr = PTR_ERR(p);
1689    }
1690    return nr;
1691}
1692

do_fork()函数的核心是copy_process(),该函数完成了进程创建的绝大部分。

 

/*
1175 * This creates a new process as a copy of the old one,
1176 * but does not actually start it yet.
1177 *
1178 * It copies the registers, and all the appropriate
1179 * parts of the process environment (as per the clone
1180 * flags). The actual kick-off is left to the caller.
1181 */
1182static struct task_struct *copy_process(unsigned long clone_flags,
1183                    unsigned long stack_start,
1184                    unsigned long stack_size,
1185                    int __user *child_tidptr,
1186                    struct pid *pid,
1187                    int trace)
1188{
1189    int retval;
1190    struct task_struct *p;
1191
1192    if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1193        return ERR_PTR(-EINVAL);
1194
1195    if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1196        return ERR_PTR(-EINVAL);
1197
1198    /*
1199     * Thread groups must share signals as well, and detached threads
1200     * can only be started up within the thread group.
1201     */
1202    if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1203        return ERR_PTR(-EINVAL);
1204
1205    /*
1206     * Shared signal handlers imply shared VM. By way of the above,
1207     * thread groups also imply shared VM. Blocking this case allows
1208     * for various simplifications in other code.
1209     */
1210    if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1211        return ERR_PTR(-EINVAL);
1212
1213    /*
1214     * Siblings of global init remain as zombies on exit since they are
1215     * not reaped by their parent (swapper). To solve this and to avoid
1216     * multi-rooted process trees, prevent global and container-inits
1217     * from creating siblings.
1218     */
1219    if ((clone_flags & CLONE_PARENT) &&
1220                current->signal->flags & SIGNAL_UNKILLABLE)
1221        return ERR_PTR(-EINVAL);
1222
1223    /*
1224     * If the new process will be in a different pid or user namespace
1225     * do not allow it to share a thread group or signal handlers or
1226     * parent with the forking task.
1227     */
1228    if (clone_flags & CLONE_SIGHAND) {
1229        if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1230            (task_active_pid_ns(current) !=
1231                current->nsproxy->pid_ns_for_children))
1232            return ERR_PTR(-EINVAL);
1233    }
1234
1235    retval = security_task_create(clone_flags);
1236    if (retval)
1237        goto fork_out;
1238
1239    retval = -ENOMEM;
1240    p = dup_task_struct(current);  #为子进程创建一个新的内核栈,复制task_struct和thread_info结构,此时子进程的进程控制块和父进程完全一致。
1241    if (!p)
1242        goto fork_out;
1243
1244    ftrace_graph_init_task(p);
1245
1246    rt_mutex_init_task(p);
1247
1248#ifdef CONFIG_PROVE_LOCKING
1249    DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1250    DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1251#endif
1252    retval = -EAGAIN;
1253    if (atomic_read(&p->real_cred->user->processes) >=
1254            task_rlimit(p, RLIMIT_NPROC)) {
1255        if (p->real_cred->user != INIT_USER &&
1256            !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1257            goto bad_fork_free;
1258    }
1259    current->flags &= ~PF_NPROC_EXCEEDED;
1260
1261    retval = copy_creds(p, clone_flags);
1262    if (retval < 0)
1263        goto bad_fork_free;
1264
1265    /*
1266     * If multiple threads are within copy_process(), then this check
1267     * triggers too late. This doesn‘t hurt, the check is only there
1268     * to stop root fork bombs.
1269     */
1270    retval = -EAGAIN;
1271    if (nr_threads >= max_threads)
1272        goto bad_fork_cleanup_count;
1273
1274    if (!try_module_get(task_thread_info(p)->exec_domain->module))
1275        goto bad_fork_cleanup_count;
1276
1277    delayacct_tsk_init(p);    /* Must remain after dup_task_struct() */
1278    p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1279    p->flags |= PF_FORKNOEXEC;
1280    INIT_LIST_HEAD(&p->children);
1281    INIT_LIST_HEAD(&p->sibling);
1282    rcu_copy_process(p);
1283    p->vfork_done = NULL;
1284    spin_lock_init(&p->alloc_lock);
1285
1286    init_sigpending(&p->pending);
1287
1288    p->utime = p->stime = p->gtime = 0;
....

通过dup_task_struct()函数,为子进程创建一个新的内核栈,复制task_struct和thread_info结构。 

ti=alloc_thread_info_node(task,node);
tsk->stack=ti;
setup_thread_stack(tsk,orig); //这里只是复制了thread_info

 

重点关注下,fork()创建子进程后,父进程从系统调用中返回,而子进程从哪开始返回.

这主要是在copy_process()中copy_thread()代码.

 

int copy_thread(unsigned long clone_flags, unsigned long sp,
133    unsigned long arg, struct task_struct *p)
134{
135    struct pt_regs *childregs = task_pt_regs(p);
136    struct task_struct *tsk;
137    int err;
138
139    p->thread.sp = (unsigned long) childregs; #记录进程切换时的堆栈指针
140    p->thread.sp0 = (unsigned long) (childregs+1);
141    memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142
143    if (unlikely(p->flags & PF_KTHREAD)) {
144        /* kernel thread */
145        memset(childregs, 0, sizeof(struct pt_regs));
146        p->thread.ip = (unsigned long) ret_from_kernel_thread;
147        task_user_gs(p) = __KERNEL_STACK_CANARY;
148        childregs->ds = __USER_DS;
149        childregs->es = __USER_DS;
150        childregs->fs = __KERNEL_PERCPU;
151        childregs->bx = sp;    /* function */
152        childregs->bp = arg;
153        childregs->orig_ax = -1;
154        childregs->cs = __KERNEL_CS | get_kernel_rpl();
155        childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
156        p->thread.io_bitmap_ptr = NULL;
157        return 0;
158    }
159    *childregs = *current_pt_regs();#复制内核堆栈
160    childregs->ax = 0; #这也是为什么子进程的fork返回0
161    if (sp)
162        childregs->sp = sp; 
163
164    p->thread.ip = (unsigned long) ret_from_fork; #子进程开始执行处
165    task_user_gs(p) = get_user_gs(current_pt_regs());
166
167    p->thread.io_bitmap_ptr = NULL;
168    tsk = current;
169    err = -ENOMEM;
170
171    if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
172        p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
173                        IO_BITMAP_BYTES, GFP_KERNEL);
174        if (!p->thread.io_bitmap_ptr) {
175            p->thread.io_bitmap_max = 0;
176            return -ENOMEM;
177        }
178        set_tsk_thread_flag(p, TIF_IO_BITMAP);
179    }
180
181    err = 0;
182
183    /*
184     * Set a new TLS for the child thread?
185     */
186    if (clone_flags & CLONE_SETTLS)
187        err = do_set_thread_area(p, -1,
188            (struct user_desc __user *)childregs->si, 0);
189
190    if (err && p->thread.io_bitmap_ptr) {
191        kfree(p->thread.io_bitmap_ptr);
192        p->thread.io_bitmap_max = 0;
193    }
194    return err;
   } 

   然后回到do_fork()函数中,唤醒子进程并开始运行。至此,一个进程创建就完成了。

三.实验总结

 中间虽然的很多细节还不是很清楚,但是对linux 创建子进程的大体流程有了一个宏观的认识,更加深刻地理解了底层Linux 内核进程运行的机制。  

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。