ARM 平台上的Linux系统启动流程
开始学习嵌入式开发就一直在使用Linux系统作为学习的平台,到现在无论是PC机还是ARM开发板都已经能顺利地跑起了Linux系统,但是对Linux 的启动流程还是不甚了解。于是开始各种百度谷歌,当然看到了各路大神写的介绍。总的来说就是:bootloader ---->kernel---->root filesystem,当然还介绍了哪个阶段完成了哪些工作。比如bootloader 是一上电就拿到cpu 的控制权的,而bootloader实现了硬件的初始化。bootloader俨然就成了power on 之后”第一个吃螃蟹”的代码。
谈到这就得想到硬件机制是如何满足这个功能的了。就拿S3C2440 这个芯片来说(我的硬件平台就是拿这个芯片作为主芯片),CPU内部集成了一块容量为4KB 的 sram (又叫stapping stone 垫脚石),当系统一上电,NAND controler 就自动地将nand flash 里的前4K内容复制到垫脚石里,而PC 指针一上电就指向垫脚石的起始地址0x00000000。这样这一部分的代码就可以得到执行。可以想象,如果这一部分的代码就是bootloader 的一部分,那一上电bootloader 不就可以得到运行了么?事实确实如此,在嵌入式Linux的软件系统中,nandflash前面一部分代码往往就是bootloader ,然后就是kernel, 再接着就是根文件系统。
说了这么多,好像都没说到启动流程啊,别着急,咱慢慢谈,所谓磨刀不误砍柴工嘛。
要说启动流程,如果只是简单的介绍从哪到哪,谁干了啥啥,得到的结果可能只是只知其然不知其所以然。个人觉得随着CPU的PC指针走,循着代码的足迹才能把整个流程理清楚,当找到了代码的执行过程,再分析一下代码,自然知道了哪个部分完成了哪些事,更重要的是为代码的移植打下了坚实的基础。自然这个过程是痛苦和枯燥的,甚至是看代码看了几天也没弄明白,不过这也是一种锻炼。好了不扯了,马上进入主题。
bootloder :
前面说了,bootloader一上电就拿到了cpu 的使用权,它当然得干一些初始化的工作啊,比如关闭看门狗、设置cpu 的运行模式、设置堆栈等等比较急迫的事情。当然还要对主板的一些其他硬件进行简单的初始化 比如网卡,显示屏,nand flash 等等的初始化工作,最后还要负责把Linux内核加载到内存中。正所谓责任和权力是并存的嘛,你得到了权益,当然就得付出。当bootloader 完成它的使命之后就会把cpu 的使用权交给下一部分代码:kernel 。
kernel:
在讨论kernel 是如何启动之前,先了解kernel 的组成结构以及是如何得来的。
下面这张图是内核编译即将结束时显示的信息:
下面的这张图说明了上面的编译过程,
可以看到,当内核源文件编译链接成 vmlinux 文件以后还进行了几个模块的编译和链接。其中vmlinux 是ELF格式的object文件,这种文件只是各个源代码经过连接以后的得到的文件,并不能在arm平台上运行。经过objcopy这个工具转换以后,得到了二进制格式文件Image,Image文件相比于vmlinux 文件,除了格式不同以外,还被去除了许多注释和调试的信息。Image文件经过压缩以后得到了piggy.gz ,这个文件仅仅是Image的压缩版,并无其他不同。接着编译生成另外几个模块文件misc.o big_endian.o head.o head-xscale.o,这几个文件组成一个叫bootstrap loader 的组件,又叫引导程序。编译生成 piggy.o 文件。最后piggy.o文件和bootstrap loader 组成一个bootable kernel Image 文件(可启动文件)。
可以看到最后得到的可执行文件就是上图最右边那个,这也是我们最后烧写到开发板的镜像。其中piggy.o 就是内核镜像,而剩下的几个文件就组成了引导程序。
下面开始讨论CPU的流转过程:
还是用一个图来展示:
从上图可以看出,系统一上电就开始执行bootloader 当bootloader 执行完以后,把控制权交给了引导程序的head.o 文件里的start 标号处,当引导程序完成引导工作以后就将控制权转给真正的内核的head.o 文件里的start 标号处。这里就是内核的入口点,最后内核的head.o将控制交给main.o 的start_kernel 函数。这样,通过查看相应的代码就可以知道这些代码到底完成了哪些工作。在这里我们可以找到相应的代码,分析一下,看它们到底完成哪些事。下面是我的分析结果:
引导程序: head.o从bootloader接过控制权,并完成如下任务:
1. 使能 I/D caches ,关闭中断 , 建立C运行环境(即设置堆栈)由 head.o 和head-xscal.o 完成
2. 解压缩并重定位代码 ,由misc.o 完成
3. 其他硬件相关的设置,如big.endian.o 为cpu设置大端模式
内核入口点:从引导程序接过控制权,完成如下任务
1. 检查有效的cpu 和cpu的信息
2. 创建初始化页表入口
3. 使能MMU
4. 检测错误并报告
5. 跳转到内核本身 main.c 文件里的 start_kernel()函数
内核启动:从kernel 的head.o接过控制权,开始内核的启动,在这里完成内核的初始化,如内核各个子系统的初始化。
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。