Linux IPC实践(2) --匿名PIPE
管道概念
管道是Unix中最古老的进程间通信的形式,我们把从一个进程连接到另一个进程的一个数据流称为一个“管道”, 管道的本质是固定大小的内核缓冲区;
如:ps aux | grep httpd | awk ‘{print $2}‘
管道限制
1)管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道;
2)匿名管道只能用于具有共同祖先的进程(如父进程与fork出的子进程)之间进行通信, 原因是pipe创建的是两个文件描述符, 不同进程直接无法直接获得;[通常,一个管道由一个进程创建,然后该进程调用fork,此后父子进程共享该管道]
匿名管道pipe
#include <unistd.h> int pipe(int pipefd[2]);
创建一无名管道
参数
Pipefd:文件描述符数组,其中pipefd[0]表示读端,pipefd[1]表示写端
管道创建示意图
/**示例: 从子进程向父进程发送数据 管道示意图如上面第二副图 **/ int main() { int fd[2]; if (pipe(fd) == -1) err_exit("pipe error"); pid_t pid = fork(); if (pid == -1) err_exit("fork error"); if (pid == 0) //子进程: 向管道中写入数据 { close(fd[0]); //关闭读端 string str("message from child process!"); write(fd[1], str.c_str(), str.size()); //向写端fd[1]写入数据 close(fd[1]); exit(EXIT_SUCCESS); } //父进程: 从管道中读出数据 close(fd[1]); //关闭写端 char buf[BUFSIZ] = {0}; read(fd[0], buf, sizeof(buf)); close(fd[0]); cout << buf << endl; }
/**示例: 用管道模拟: ls | wc -w的运行 1.子进程运行ls 2.父进程运行wc -w 3.通过管道, 将子进程的输出发送到wc的输入 **/ int main() { int pipefd[2]; if (pipe(pipefd) == -1) err_exit("pipe error"); pid_t pid = fork(); if (pid == -1) err_exit("fork error"); if (pid == 0) //子进程 { close(pipefd[0]); //关闭读端 //使得STDOUT_FILENO也指向pipefd[1],亦即ls命令的输出将打印到管道中 dup2(pipefd[1], STDOUT_FILENO); //此时可以关闭管道写端 close(pipefd[1]); execlp("/bin/ls", "ls", NULL); //如果进程映像替换失败,则打印下面出错信息 cerr << "child execlp error" << endl;; exit(EXIT_FAILURE); } //父进程 close(pipefd[1]); //关闭写端 //使得STDIN_FILENO也指向pipefd[2],亦即wc命令将从管道中读取输入 dup2(pipefd[0], STDIN_FILENO); close(pipefd[0]); execlp("/usr/bin/wc", "wc", "-w", NULL); cerr << "parent execlp error" << endl; exit(EXIT_FAILURE); }
匿名管道读写规则
规则 1)管道空时
O_NONBLOCK disable:read调用阻塞,即进程暂停执行,一直等到有数据来到为止。
O_NONBLOCK enable:read调用返回-1,errno值为EAGAIN。
//验证 int main() { int pipefd[2]; if (pipe(pipefd) != 0) err_exit("pipe error"); pid_t pid = fork(); if (pid == -1) err_exit("fork error"); if (pid == 0) //In Child, Write pipe { sleep(10); close(pipefd[0]); //Close Read pipe string str("I Can Write Pipe from Child!"); write(pipefd[1],str.c_str(),str.size()); //Write to pipe close(pipefd[1]); exit(EXIT_SUCCESS); } //In Parent, Read pipe close(pipefd[1]); //Close Write pipe char buf[1024] = {0}; //Set Read pipefd UnBlock! 查看在下面四行语句注释的前后有什么区别 // int flags = fcntl(pipefd[0],F_GETFL, 0); // flags |= O_NONBLOCK; // if (fcntl(pipefd[0],F_SETFL,flags) == -1) // err_exit("Set UnBlock error"); int readCount = read(pipefd[0],buf,sizeof(buf)); //Read from pipe if (readCount < 0) //read立刻返回,不再等待子进程发送数据 err_exit("read error"); cout << "Read from pipe: " << buf << endl; close(pipefd[0]); }
规则 2)管道满时
O_NONBLOCK disable: write调用阻塞,直到有进程读走数据
O_NONBLOCK enable:调用返回-1,errno值为EAGAIN
/** 验证规则2) 同时测试管道的容量 **/ int main() { if (signal(SIGPIPE, handler) == SIG_ERR) err_exit("signal error"); int pipefd[2]; if (pipe(pipefd) != 0) err_exit("pipe error"); // 将管道的写端设置成为非阻塞模式 // 将下面三行注释之后查看效果 int flags = fcntl(pipefd[1], F_GETFL, 0); if (fcntl(pipefd[1], F_SETFL, flags|O_NONBLOCK) == -1) err_exit("fcntl set error"); int count = 0; while (true) { if (write(pipefd[1], "A", 1) == -1) { cerr << "write pipe error: " << strerror(errno) << endl; break; } ++ count; } cout << "pipe size = " << count << endl; }
3)如果所有管道写端对应的文件描述符被关闭,则read返回0
//验证规则3) int main() { int pipefd[2]; if (pipe(pipefd) != 0) err_exit("pipe error"); pid_t pid = fork(); if (pid == -1) err_exit("fork error"); else if (pid == 0) { close(pipefd[1]); exit(EXIT_SUCCESS); } close(pipefd[1]); sleep(2); char buf[2]; if (read(pipefd[0], buf, sizeof(buf)) == 0) cout << "sure" << endl; }
4)如果所有管道读端对应的文件描述符被关闭,则write操作会产生信号SIGPIPE
//验证规则4) int main() { if (signal(SIGPIPE, handler) == SIG_ERR) err_exit("signal error"); int pipefd[2]; if (pipe(pipefd) != 0) err_exit("pipe error"); pid_t pid = fork(); if (pid == -1) err_exit("fork error"); else if (pid == 0) { close(pipefd[0]); exit(EXIT_SUCCESS); } close(pipefd[0]); sleep(2); char test; if (write(pipefd[1], &test, sizeof(test)) < 0) err_exit("write error"); }
Linux PIPE特征
1)当要写入的数据量不大于PIPE_BUF时,Linux将保证写入的原子性。
2)当要写入的数据量大于PIPE_BUF时,Linux将不再保证写入的原子性。
man说明:
POSIX.1-2001 says that write(2)s of less than PIPE_BUF bytes must be atomic:
the output data is written to the pipe as a contiguous sequence.
Writes of more than PIPE_BUF bytes may be nonatomic:
the kernel may interleave the data with data written by other processes.
POSIX.1-2001 requires PIPE_BUF to be at least 512 bytes.
(On Linux, PIPE_BUF is 4096 bytes. 在Linux当中, PIPE_BUF为4字节).
The precise semantics depend on whether the file descriptor is non-blocking(O_NONBLOCK),
whether there are multiple writers to the pipe, and on n, the number of bytes to be written:
O_NONBLOCK disabled(阻塞), n <= PIPE_BUF
All n bytes are written atomically; write(2) may block if there is not room for n bytes to be written immediately
O_NONBLOCK enabled(非阻塞), n <= PIPE_BUF
If there is room to write n bytes to the pipe, then write(2) succeeds immediately, writing all n bytes;
otherwise write(2) fails, with errno set to EAGAIN(注意: 如果空间不足以写入数据, 则一个字节也不写入, 直接出错返回).
O_NONBLOCK disabled, n > PIPE_BUF
The write is nonatomic: the data given to write(2) may be interleaved with write(2)s by other process;
the write(2) blocks until n bytes have been written.
O_NONBLOCK enabled, n > PIPE_BUF
If the pipe is full, then write(2) fails, with errno set to EAGAIN(此时也是没有一个字符写入管道).
Otherwise, from 1 to n bytes may be written (i.e., a "partial write" may occur;
the caller should check the return value from write(2) to see how many bytes were actually written),
and these bytes may be interleaved with writes by other processes.
/** 验证: 已知管道的PIPE_BUF为4K, 我们启动两个进程A, B向管道中各自写入68K的内容, 然后我们以4K为一组, 查看管道最后一个字节的内容, 多运行该程序几次, 就会发现这68K的数据会有交叉写入的情况 **/ int main() { const int TEST_BUF = 68 * 1024; //设置写入的数据量为68K char bufA[TEST_BUF]; char bufB[TEST_BUF]; memset(bufA, ‘A‘, sizeof(bufA)); memset(bufB, ‘B‘, sizeof(bufB)); int pipefd[2]; if (pipe(pipefd) != 0) err_exit("pipe error"); pid_t pid; if ((pid = fork()) == -1) err_exit("first fork error"); else if (pid == 0) //第一个子进程A, 向管道写入bufA { close(pipefd[0]); int writeBytes = write(pipefd[1], bufA, sizeof(bufA)); cout << "A Process " << getpid() << ", write " << writeBytes << " bytes to pipe" << endl; exit(EXIT_SUCCESS); } if ((pid = fork()) == -1) err_exit("second fork error"); else if (pid == 0) //第二个子进程B, 向管道写入bufB { close(pipefd[0]); int writeBytes = write(pipefd[1], bufB, sizeof(bufB)); cout << "B Process " << getpid() << ", write " << writeBytes << " bytes to pipe" << endl; exit(EXIT_SUCCESS); } // 父进程 close(pipefd[1]); sleep(2); //等待两个子进程写完 char buf[4 * 1024]; //申请一个4K的buf int fd = open("save.txt", O_WRONLY|O_TRUNC|O_CREAT, 0666); if (fd == -1) err_exit("file open error"); while (true) { int readBytes = read(pipefd[0], buf, sizeof(buf)); if (readBytes == 0) break; if (write(fd, buf, readBytes) == -1) err_exit("write file error"); cout << "Parent Process " << getpid() << " read " << readBytes << " bytes from pipe, buf[4095] = " << buf[4095] << endl; } }
附-管道容量查询
man 7 pipe
注意: 管道的容量不一定就等于PIPE_BUF, 如在Ubuntu中, 管道容量为64K, 而PIPE_BUF为4K.
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。