Linux内核结构体--kfifo 环状缓冲区

1、前言

  最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的。缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度。例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送。为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲区中取。这是典型的生产者和消费者模型,缓冲区中数据满足FIFO特性,因此可以采用队列进行实现。Linux内核的kfifo正好是一个环形队列,可以用来当作环形缓冲区。生产者与消费者使用缓冲区如下图所示:

  环形缓冲区的详细介绍及实现方法可以参考http://en.wikipedia.org/wiki/Circular_buffer,介绍的非常详细,列举了实现环形队列的几种方法。环形队列的不便之处在于如何判断队列是空还是满。维基百科上给三种实现方法。

2、linux 内核kfifo

  kfifo设计的非常巧妙,代码很精简,对于入队和出对处理的出人意料。首先看一下kfifo的数据结构:

struct kfifo {
    unsigned char *buffer;     /* the buffer holding the data */
    unsigned int size;         /* the size of the allocated buffer */
    unsigned int in;           /* data is added at offset (in % size) */
    unsigned int out;          /* data is extracted from off. (out % size) */
    spinlock_t *lock;          /* protects concurrent modifications */
};

kfifo提供的方法有:

//根据给定buffer创建一个kfifo
struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,
                gfp_t gfp_mask, spinlock_t *lock);
//给定size分配buffer和kfifo
struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask,
                 spinlock_t *lock);
//释放kfifo空间
void kfifo_free(struct kfifo *fifo)
//向kfifo中添加数据
unsigned int kfifo_put(struct kfifo *fifo,
                const unsigned char *buffer, unsigned int len)
//从kfifo中取数据
unsigned int kfifo_put(struct kfifo *fifo,
                const unsigned char *buffer, unsigned int len)
//获取kfifo中有数据的buffer大小
unsigned int kfifo_len(struct kfifo *fifo)

 定义自旋锁的目的为了防止多进程/线程并发使用kfifo。因为in和out在每次get和out时,发生改变。初始化和创建kfifo的源代码如下:
struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,
             gfp_t gfp_mask, spinlock_t *lock)
{
    struct kfifo *fifo;
    /* size must be a power of 2 */
    BUG_ON(!is_power_of_2(size));
    fifo = kmalloc(sizeof(struct kfifo), gfp_mask);
    if (!fifo)
        return ERR_PTR(-ENOMEM);
    fifo->buffer = buffer;
    fifo->size = size;
    fifo->in = fifo->out = 0;
    fifo->lock = lock;

    return fifo;
}
struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock)
{
    unsigned char *buffer;
    struct kfifo *ret;
    if (!is_power_of_2(size)) {
        BUG_ON(size > 0x80000000);
        size = roundup_pow_of_two(size);
    }
    buffer = kmalloc(size, gfp_mask);
    if (!buffer)
        return ERR_PTR(-ENOMEM);
    ret = kfifo_init(buffer, size, gfp_mask, lock);

    if (IS_ERR(ret))
        kfree(buffer);
    return ret;
}

 在kfifo_init和kfifo_calloc中,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻--对kfifo->size取模运算可以转化为与运算,如:kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)

      kfifo的巧妙之处在于in和out定义为无符号类型,在put和get时,in和out都是增加,当达到最大值时,产生溢出,使得从0开始,进行循环使用。put和get代码如下所示:

static inline unsigned int kfifo_put(struct kfifo *fifo,
                const unsigned char *buffer, unsigned int len)
{
    unsigned long flags;
    unsigned int ret;
    spin_lock_irqsave(fifo->lock, flags);
    ret = __kfifo_put(fifo, buffer, len);
    spin_unlock_irqrestore(fifo->lock, flags);
    return ret;
}

static inline unsigned int kfifo_get(struct kfifo *fifo,
                     unsigned char *buffer, unsigned int len)
{
    unsigned long flags;
    unsigned int ret;
    spin_lock_irqsave(fifo->lock, flags);
    ret = __kfifo_get(fifo, buffer, len);
        //当fifo->in == fifo->out时,buufer为空
    if (fifo->in == fifo->out)
        fifo->in = fifo->out = 0;
    spin_unlock_irqrestore(fifo->lock, flags);
    return ret;
}


unsigned int __kfifo_put(struct kfifo *fifo,
            const unsigned char *buffer, unsigned int len)
{
    unsigned int l;
       //buffer中空的长度
    len = min(len, fifo->size - fifo->in + fifo->out);
    /*
     * Ensure that we sample the fifo->out index -before- we
     * start putting bytes into the kfifo.
     */
    smp_mb();
    /* first put the data starting from fifo->in to buffer end */
    l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
    memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);
    /* then put the rest (if any) at the beginning of the buffer */
    memcpy(fifo->buffer, buffer + l, len - l);

    /*
     * Ensure that we add the bytes to the kfifo -before-
     * we update the fifo->in index.
     */
    smp_wmb();
    fifo->in += len;  //每次累加,到达最大值后溢出,自动转为0
    return len;
}

unsigned int __kfifo_get(struct kfifo *fifo,
             unsigned char *buffer, unsigned int len)
{
    unsigned int l;
        //有数据的缓冲区的长度
    len = min(len, fifo->in - fifo->out);
    /*
     * Ensure that we sample the fifo->in index -before- we
     * start removing bytes from the kfifo.
     */
    smp_rmb();
    /* first get the data from fifo->out until the end of the buffer */
    l = min(len, fifo->size - (fifo->out & (fifo->size - 1)));
    memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);
    /* then get the rest (if any) from the beginning of the buffer */
    memcpy(buffer + l, fifo->buffer, len - l);
    /*
     * Ensure that we remove the bytes from the kfifo -before-
     * we update the fifo->out index.
     */
    smp_mb();
    fifo->out += len; //每次累加,到达最大值后溢出,自动转为0
    return len;
}

put和get在调用__put和__get过程都进行加锁,防止并发。从代码中可以看出put和get都调用两次memcpy,这针对的是边界条件。例如下图:蓝色表示空闲,红色表示占用。

(1)空的kfifo,

(2)put一个buffer后

(3)get一个buffer后

(4)当此时put的buffer长度超出in到末尾长度时,则将剩下的移到头部去

3、测试程序

 仿照kfifo编写一个ring_buffer,现有线程互斥量进行并发控制。设计的ring_buffer如下所示:

/**@brief 仿照linux kfifo写的ring buffer
 *@atuher Anker  date:2013-12-18
* ring_buffer.h
 * */

#ifndef KFIFO_HEADER_H 
#define KFIFO_HEADER_H

#include <inttypes.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <assert.h>

//判断x是否是2的次方
#define is_power_of_2(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))
//取a和b中最小值
#define min(a, b) (((a) < (b)) ? (a) : (b))

struct ring_buffer
{
    void         *buffer;     //缓冲区
    uint32_t     size;       //大小
    uint32_t     in;         //入口位置
    uint32_t       out;        //出口位置
    pthread_mutex_t *f_lock;    //互斥锁
};
//初始化缓冲区
struct ring_buffer* ring_buffer_init(void *buffer, uint32_t size, pthread_mutex_t *f_lock)
{
    assert(buffer);
    struct ring_buffer *ring_buf = NULL;
    if (!is_power_of_2(size))
    {
    fprintf(stderr,"size must be power of 2.\n");
        return ring_buf;
    }
    ring_buf = (struct ring_buffer *)malloc(sizeof(struct ring_buffer));
    if (!ring_buf)
    {
        fprintf(stderr,"Failed to malloc memory,errno:%u,reason:%s",
            errno, strerror(errno));
        return ring_buf;
    }
    memset(ring_buf, 0, sizeof(struct ring_buffer));
    ring_buf->buffer = buffer;
    ring_buf->size = size;
    ring_buf->in = 0;
    ring_buf->out = 0;
        ring_buf->f_lock = f_lock;
    return ring_buf;
}
//释放缓冲区
void ring_buffer_free(struct ring_buffer *ring_buf)
{
    if (ring_buf)
    {
    if (ring_buf->buffer)
    {
        free(ring_buf->buffer);
        ring_buf->buffer = NULL;
    }
    free(ring_buf);
    ring_buf = NULL;
    }
}

//缓冲区的长度
uint32_t __ring_buffer_len(const struct ring_buffer *ring_buf)
{
    return (ring_buf->in - ring_buf->out);
}

//从缓冲区中取数据
uint32_t __ring_buffer_get(struct ring_buffer *ring_buf, void * buffer, uint32_t size)
{
    assert(ring_buf || buffer);
    uint32_t len = 0;
    size  = min(size, ring_buf->in - ring_buf->out);        
    /* first get the data from fifo->out until the end of the buffer */
    len = min(size, ring_buf->size - (ring_buf->out & (ring_buf->size - 1)));
    memcpy(buffer, ring_buf->buffer + (ring_buf->out & (ring_buf->size - 1)), len);
    /* then get the rest (if any) from the beginning of the buffer */
    memcpy(buffer + len, ring_buf->buffer, size - len);
    ring_buf->out += size;
    return size;
}
//向缓冲区中存放数据
uint32_t __ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
{
    assert(ring_buf || buffer);
    uint32_t len = 0;
    size = min(size, ring_buf->size - ring_buf->in + ring_buf->out);
    /* first put the data starting from fifo->in to buffer end */
    len  = min(size, ring_buf->size - (ring_buf->in & (ring_buf->size - 1)));
    memcpy(ring_buf->buffer + (ring_buf->in & (ring_buf->size - 1)), buffer, len);
    /* then put the rest (if any) at the beginning of the buffer */
    memcpy(ring_buf->buffer, buffer + len, size - len);
    ring_buf->in += size;
    return size;
}

uint32_t ring_buffer_len(const struct ring_buffer *ring_buf)
{
    uint32_t len = 0;
    pthread_mutex_lock(ring_buf->f_lock);
    len = __ring_buffer_len(ring_buf);
    pthread_mutex_unlock(ring_buf->f_lock);
    return len;
}

uint32_t ring_buffer_get(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
{
    uint32_t ret;
    pthread_mutex_lock(ring_buf->f_lock);
    ret = __ring_buffer_get(ring_buf, buffer, size);
    //buffer中没有数据
    if (ring_buf->in == ring_buf->out)
    ring_buf->in = ring_buf->out = 0;
    pthread_mutex_unlock(ring_buf->f_lock);
    return ret;
}

uint32_t ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
{
    uint32_t ret;
    pthread_mutex_lock(ring_buf->f_lock);
    ret = __ring_buffer_put(ring_buf, buffer, size);
    pthread_mutex_unlock(ring_buf->f_lock);
    return ret;
}
#endif
 采用多线程模拟生产者和消费者编写测试程序,如下所示:

/**@brief ring buffer测试程序,创建两个线程,一个生产者,一个消费者。
 * 生产者每隔1秒向buffer中投入数据,消费者每隔2秒去取数据。
 *@atuher Anker  date:2013-12-18
 * */
#include "ring_buffer.h"
#include <pthread.h>
#include <time.h>

#define BUFFER_SIZE  1024 * 1024

typedef struct student_info
{
    uint64_t stu_id;
    uint32_t age;
    uint32_t score;
}student_info;


void print_student_info(const student_info *stu_info)
{
    assert(stu_info);
    printf("id:%lu\t",stu_info->stu_id);
    printf("age:%u\t",stu_info->age);
    printf("score:%u\n",stu_info->score);
}

student_info * get_student_info(time_t timer)
{
    student_info *stu_info = (student_info *)malloc(sizeof(student_info));
    if (!stu_info)
    {
    fprintf(stderr, "Failed to malloc memory.\n");
    return NULL;
    }
    srand(timer);
    stu_info->stu_id = 10000 + rand() % 9999;
    stu_info->age = rand() % 30;
    stu_info->score = rand() % 101;
    print_student_info(stu_info);
    return stu_info;
}

void * consumer_proc(void *arg)
{
    struct ring_buffer *ring_buf = (struct ring_buffer *)arg;
    student_info stu_info; 
    while(1)
    {
    sleep(2);
    printf("------------------------------------------\n");
    printf("get a student info from ring buffer.\n");
    ring_buffer_get(ring_buf, (void *)&stu_info, sizeof(student_info));
    printf("ring buffer length: %u\n", ring_buffer_len(ring_buf));
    print_student_info(&stu_info);
    printf("------------------------------------------\n");
    }
    return (void *)ring_buf;
}

void * producer_proc(void *arg)
{
    time_t cur_time;
    struct ring_buffer *ring_buf = (struct ring_buffer *)arg;
    while(1)
    {
    time(&cur_time);
    srand(cur_time);
    int seed = rand() % 11111;
    printf("******************************************\n");
    student_info *stu_info = get_student_info(cur_time + seed);
    printf("put a student info to ring buffer.\n");
    ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
    printf("ring buffer length: %u\n", ring_buffer_len(ring_buf));
    printf("******************************************\n");
    sleep(1);
    }
    return (void *)ring_buf;
}

int consumer_thread(void *arg)
{
    int err;
    pthread_t tid;
    err = pthread_create(&tid, NULL, consumer_proc, arg);
    if (err != 0)
    {
    fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n",
        errno, strerror(errno));
    return -1;
    }
    return tid;
}
int producer_thread(void *arg)
{
    int err;
    pthread_t tid;
    err = pthread_create(&tid, NULL, producer_proc, arg);
    if (err != 0)
    {
    fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n",
        errno, strerror(errno));
    return -1;
    }
    return tid;
}


int main()
{
    void * buffer = NULL;
    uint32_t size = 0;
    struct ring_buffer *ring_buf = NULL;
    pthread_t consume_pid, produce_pid;

    pthread_mutex_t *f_lock = (pthread_mutex_t *)malloc(sizeof(pthread_mutex_t));
    if (pthread_mutex_init(f_lock, NULL) != 0)
    {
    fprintf(stderr, "Failed init mutex,errno:%u,reason:%s\n",
        errno, strerror(errno));
    return -1;
    }
    buffer = (void *)malloc(BUFFER_SIZE);
    if (!buffer)
    {
    fprintf(stderr, "Failed to malloc memory.\n");
    return -1;
    }
    size = BUFFER_SIZE;
    ring_buf = ring_buffer_init(buffer, size, f_lock);
    if (!ring_buf)
    {
    fprintf(stderr, "Failed to init ring buffer.\n");
    return -1;
    }
#if 0
    student_info *stu_info = get_student_info(638946124);
    ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
    stu_info = get_student_info(976686464);
    ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
    ring_buffer_get(ring_buf, (void *)stu_info, sizeof(student_info));
    print_student_info(stu_info);
#endif
    printf("multi thread test.......\n");
    produce_pid  = producer_thread((void*)ring_buf);
    consume_pid  = consumer_thread((void*)ring_buf);
    pthread_join(produce_pid, NULL);
    pthread_join(consume_pid, NULL);
    ring_buffer_free(ring_buf);
    free(f_lock);
    return 0;
}

总结:

len = min(len, fifo->size - fifo->in + fifo->out);
      在 len (fifo->size - fifo->in + fifo->out) 之间取一个较小的值赋给len。注意,当 (fifo->in == fifo->out+fifo->size) 时,表示缓冲区已满,此时得到的较小值一定是0,后面实际写入的字节数也全为0。
      另一种边界情况是当 len 很大时(因为len是无符号的,负数对它来说也是一个很大的正数),这一句也能保证len取到一个较小的值,因为    fifo->in 总是大于等于 fifo->out ,所以后面的那个表达式 l = min(len, fifo->size - (fifo->in & (fifo->size - 1))); 的值不会超过fifo->size的大小。
      smp_mb();  smp_wmb(); 是加内存屏障,这里不是我们讨论的范围,你可以忽略它。
      l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));    是把上一步决定的要写入的字节数len “切开”,这里又使用了一个技巧。注意:实际分配给 fifo->buffer 的字节数 fifo->size,必须是2的幂,否则这里就会出错。既然 fifo->size 是2的幂,那么 (fifo->size-1) 也就是一个后面几位全为1的数,也就能保证(fifo->in & (fifo->size - 1)) 总为不超过 (fifo->size - 1) 的那一部分,和 (fifo->in)% (fifo->size - 1) 的效果一样。
      这样后面的代码就不难理解了,它先向  fifo->in  到缓冲区末端这一块写数据,如果还没写完,在从缓冲区头开始写入剩下的,从而实现了循环缓冲。最后,把写指针后移 len 个字节,并返回len。
       从上面可以看出,fifo->in的值可以从0变化到超过fifo->size的数值,fifo->out也如此,但它们的差不会超过fifo->size。

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。