LeetCode:LRU cache
题目:LRU cache
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
LRU是一种应用在操作系统上的缓存替换策略,和我们常见的FIFO算法一样,都是用于操作系统中内存管理中的页面替换,其全称叫做Least Recently Used(近期最少使用算法),算法主要是根据数据的历史访问记录来进行数据的淘汰,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。
LRU算法设计
数据结构的选择:因为涉及到数据元素的查找,删除,替换,移动等操作,所以我们选择列表来进行数据的存储,为了考虑时间复杂度,我们分析一下,单链表插入删除操作的时间复杂度为O(n),双链表为O(1),所以,首选肯定是双链表,另外,元素的查找操作,map的查找效率为O(lgn),首选应该是map,但还有一个hashmap,能够达到O(1)的查找效率,我们后面再编程的时候都试一下这几种方法,看看其能不能通过编译,通过了时间又是多少?
为了能够比较形象的了解LRU的执行过程,我们举一个例子,如下:
假定现有一进程的页面访问序列为:
4,7,0,7,1,0,1,2,1,2,6
缓存容量为5,则随着进程的访问,缓存栈中页面号的变化情况如下图所示。在访问页面6时发生了缺页,此时页面4是最近最久未被访问的页,应将它置换出去。
在算法实现时,我们可以把最近最久没有使用的数据放在链表的最后,当缓存空间满时(即发生缺页),直接将最后一个数据淘汰即可,同时,如果一个数据发生命中,或者新来一个数据,我们都将该数据移到链表的头部,这样就能保证在链表头部的数据都是最近访问过的,而链表后面的数据就是最近最久没有访问过的。如下所示:
代码实现,为了验证上面所提出数据结构是否能通过LeetCode的编译,我们都实现一遍,下面是single list+map的实现,时间复杂度为O(n)+O(lgn),开始我还以为通过不了,最后还是通过了,耗时大约900ms。
/************************************************************************/ /* 单链表版本 /************************************************************************/ struct Node { int m_nKey; int m_nValue; Node* m_pNext; }; class LRUCache { public: LRUCache(int capacity) { m_nSize = capacity; m_nCount = 0; m_lruList = NULL; } int get(int key) { if (NULL == m_lruList) return -1; map<int, Node *>::iterator it = m_lruMap.find(key); if (it == m_lruMap.end()) //没有找到 return -1; else { Node *p = it->second; //把节点移到链表的开头 pushFront(p); } return m_lruList->m_nValue; } void set(int key, int value) { if (NULL == m_lruList) { m_lruList = new Node(); m_lruList->m_nKey = key; m_lruList->m_nValue = value; m_lruList->m_pNext = NULL; m_nCount ++; m_lruMap[key] = m_lruList; } else { map<int, Node *>::iterator it = m_lruMap.find(key); if (it == m_lruMap.end()){ //没有命中,将链表的最后一个节点删除 if (m_nSize == m_nCount) { //cache已满 Node *pHead = m_lruList; Node *pTemp = pHead; while(pHead->m_pNext != NULL) { pTemp = pHead; pHead = pHead->m_pNext; } m_lruMap.erase(pHead->m_nKey); m_nCount --; if (pHead == pTemp) //只有一个节点 pHead = NULL; else pTemp->m_pNext = NULL; } Node *p = new Node(); //插入新的节点于头部 p->m_nKey = key; p->m_nValue = value; p->m_pNext = m_lruList; m_lruList = p; m_lruMap[key] = m_lruList; m_nCount ++; } else { //命中,则将该命中的节点移至链表头部 Node *pCur = it->second; pCur->m_nValue = value; pushFront(pCur); } } } void pushFront(Node *pCur) { //把节点移动到链表头部,时间复杂度O(n) if (NULL == pCur) return; if (m_nCount == 1 || pCur == m_lruList) return; Node *pHead = m_lruList; while (pHead->m_pNext != pCur) pHead = pHead->m_pNext; pHead->m_pNext = pCur->m_pNext; pCur->m_pNext = m_lruList; m_lruList = pCur; } void printCache() { Node *p = m_lruList; while (p) { cout << p->m_nKey << ":" << p->m_nValue << " "; p = p->m_pNext; } } private: int m_nSize; int m_nCount; map<int, Node *> m_lruMap; Node* m_lruList; };
下面是double list+map版本,时间复杂度为O(1)+O(lgn),耗时大约300s
1 /************************************************************************/ 2 /* 双链表版本 3 /************************************************************************/ 4 struct Node { 5 int m_nKey; 6 int m_nValue; 7 Node* m_pNext; 8 Node* m_pPre; 9 }; 10 11 class LRUCache { 12 public: 13 LRUCache(int capacity) { 14 m_nSize = capacity; 15 m_nCount = 0; 16 m_lruListHead = NULL; 17 m_lruListTail = NULL; 18 } 19 20 int get(int key) { 21 if (NULL == m_lruListHead) 22 return -1; 23 map<int, Node *>::iterator it = m_lruMap.find(key); 24 if (it == m_lruMap.end()) //没有找到 25 return -1; 26 else { 27 Node *p = it->second; 28 //把节点移到链表的开头 29 pushFront(p); 30 } 31 return m_lruListHead->m_nValue; 32 } 33 34 void set(int key, int value) { 35 if (NULL == m_lruListHead) { 36 m_lruListHead = new Node(); 37 m_lruListHead->m_nKey = key; 38 m_lruListHead->m_nValue = value; 39 m_lruListHead->m_pNext = NULL; 40 m_lruListHead->m_pPre = NULL; 41 m_lruListTail = m_lruListHead; 42 m_nCount ++; 43 m_lruMap[key] = m_lruListHead; 44 } 45 else { 46 map<int, Node *>::iterator it = m_lruMap.find(key); 47 if (it == m_lruMap.end()){ //没有命中,将链表的最后一个节点删除 48 if (m_nSize == m_nCount) { //cache已满 49 if (m_lruListHead == m_lruListTail) {//只有一个节点 50 m_lruMap.erase(m_lruListHead->m_nKey); 51 m_lruListHead->m_nKey = key; 52 m_lruListHead->m_nValue = value; 53 m_lruMap[key] = m_lruListHead; 54 } 55 else { 56 Node *p = m_lruListTail; 57 m_lruListTail->m_pPre->m_pNext = NULL; 58 m_lruListTail = m_lruListTail->m_pPre; 59 m_lruMap.erase(p->m_nKey); 60 61 p->m_nKey = key; 62 p->m_nValue = value; 63 p->m_pNext = m_lruListHead; 64 p->m_pPre = NULL; 65 m_lruListHead->m_pPre = p; 66 m_lruListHead = p; 67 m_lruMap[key] = m_lruListHead; 68 } 69 } 70 else { 71 Node *p = new Node(); //插入新的节点于头部 72 p->m_nKey = key; 73 p->m_nValue = value; 74 p->m_pNext = m_lruListHead; 75 p->m_pPre = NULL; 76 m_lruListHead->m_pPre = p; 77 m_lruListHead = p; 78 m_lruMap[key] = m_lruListHead; 79 m_nCount ++; 80 } 81 } 82 else { //命中,则将该命中的节点移至链表头部 83 Node *pCur = it->second; 84 pCur->m_nValue = value; 85 pushFront(pCur); 86 } 87 } 88 } 89 90 void pushFront(Node *pCur) { //把节点移动到链表头部,时间复杂度O(1) 91 if (NULL == pCur) 92 return; 93 if (m_nCount == 1 || pCur == m_lruListHead) 94 return; 95 if (pCur == m_lruListTail) { //假如是尾节点 96 pCur->m_pPre->m_pNext = NULL; 97 pCur->m_pNext = m_lruListHead; 98 m_lruListTail = pCur->m_pPre; 99 m_lruListHead->m_pPre = pCur; 100 m_lruListHead = pCur; 101 } 102 else { 103 pCur->m_pPre->m_pNext = pCur->m_pNext; 104 pCur->m_pNext->m_pPre = pCur->m_pPre; 105 106 pCur->m_pNext = m_lruListHead; 107 m_lruListHead->m_pPre = pCur; 108 m_lruListHead = pCur; 109 } 110 } 111 112 void printCache() { 113 Node *p = m_lruListHead; 114 while (p) { 115 cout << p->m_nKey << ":" << p->m_nValue << " "; 116 p = p->m_pNext; 117 } 118 } 119 120 private: 121 int m_nSize; 122 int m_nCount; 123 map<int, Node *> m_lruMap; 124 Node* m_lruListHead; 125 Node* m_lruListTail; 126 };
下面是hashmap+list版本,如果是C++,list和hashmap都是STL自带的功能实现,所以,我们直接应用STL库,代码量大大减少,时间复杂度为O(1).^-^代码参考:dancingrain
#include <iostream> #include <hash_map> #include <list> #include <utility> using namespace std; using namespace stdext; class LRUCache{ public: LRUCache(int capacity) { m_capacity = capacity ; } int get(int key) { int retValue = -1 ; hash_map<int, list<pair<int, int> > :: iterator> ::iterator it = cachesMap.find(key) ; //如果在Cashe中,将记录移动到链表的最前端 if (it != cachesMap.end()) { retValue = it ->second->second ; //移动到最前端 list<pair<int, int> > :: iterator ptrPair = it -> second ; pair<int, int> tmpPair = *ptrPair ; caches.erase(ptrPair) ; caches.push_front(tmpPair) ; //修改map中的值 cachesMap[key] = caches.begin() ; } return retValue ; } void set(int key, int value) { hash_map<int, list<pair<int, int> > :: iterator> ::iterator it = cachesMap.find(key) ; if (it != cachesMap.end()) //已经存在其中 { list<pair<int, int> > :: iterator ptrPait = it ->second ; ptrPait->second = value ; //移动到最前面 pair<int , int > tmpPair = *ptrPait ; caches.erase(ptrPait) ; caches.push_front(tmpPair) ; //更新map cachesMap[key] = caches.begin() ; } else //不存在其中 { pair<int , int > tmpPair = make_pair(key, value) ; if (m_capacity == caches.size()) //已经满 { int delKey = caches.back().first ; caches.pop_back() ; //删除最后一个 //删除在map中的相应项 hash_map<int, list<pair<int, int> > :: iterator> ::iterator delIt = cachesMap.find(delKey) ; cachesMap.erase(delIt) ; } caches.push_front(tmpPair) ; cachesMap[key] = caches.begin() ; //更新map } } private: int m_capacity ; //cashe的大小 list<pair<int, int> > caches ; //用一个双链表存储cashe的内容 hash_map< int, list<pair<int, int> > :: iterator> cachesMap ; //使用map加快查找的速度 };
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。