linux子系统的初始化_subsys_initcall()
概述
内核选项的解析完成之后,各个子系统的初始化即进入第二部分—入口函数的调用。通常USB、PCI这样的子系统都会有一个名为subsys_initcall的入口,如果你选择它们作为研究内核的切入点,那么就请首先找到它。
section的声明
C 语言中attribute属性的section是在目标文件链接时可以用于主动定制代码的位置,具体可以WIKI,下面看linux kernel中是如何定义的。
以下代码来自 linux内核源码中 include/linux/init.h 文件。下面使用相同语法规则的变量名存放了各个初始化函数的地址。
更重要的是其section属性也是按照一定规则构成的。
关于section见 http://lihuize123123.blog.163.com/blog/static/878290522010420111428109/
/* initcalls are now grouped by functionality into separate * subsections. Ordering inside the subsections is determined * by link order. * For backwards compatibility, initcall() puts the call in * the device init subsection. * * The `id‘ arg to __define_initcall() is needed so that multiple initcalls * can point at the same handler without causing duplicate-symbol build errors. */ #define __define_initcall(level,fn,id) static initcall_t __initcall_##fn##id __used __attribute__((__section__(".initcall" level ".init"))) = fn /* * Early initcalls run before initializing SMP. * * Only for built-in code, not modules. */ #define early_initcall(fn) __define_initcall("early",fn,early) /* * A "pure" initcall has no dependencies on anything else, and purely * initializes variables that couldn‘t be statically initialized. * * This only exists for built-in code, not for modules. */ #define pure_initcall(fn) __define_initcall("0",fn,0) #define core_initcall(fn) __define_initcall("1",fn,1) #define core_initcall_sync(fn) __define_initcall("1s",fn,1s) #define postcore_initcall(fn) __define_initcall("2",fn,2) #define postcore_initcall_sync(fn) __define_initcall("2s",fn,2s) #define arch_initcall(fn) __define_initcall("3",fn,3) #define arch_initcall_sync(fn) __define_initcall("3s",fn,3s) #define subsys_initcall(fn) __define_initcall("4",fn,4) #define subsys_initcall_sync(fn) __define_initcall("4s",fn,4s) #define fs_initcall(fn) __define_initcall("5",fn,5) #define fs_initcall_sync(fn) __define_initcall("5s",fn,5s) #define rootfs_initcall(fn) __define_initcall("rootfs",fn,rootfs) #define device_initcall(fn) __define_initcall("6",fn,6) #define device_initcall_sync(fn) __define_initcall("6s",fn,6s) #define late_initcall(fn) __define_initcall("7",fn,7) #define late_initcall_sync(fn) __define_initcall("7s",fn,7s) #define __initcall(fn) device_initcall(fn) #define __exitcall(fn) static exitcall_t __exitcall_##fn __exit_call = fn #define console_initcall(fn) static initcall_t __initcall_##fn __used __section(.con_initcall.init) = fn #define security_initcall(fn) static initcall_t __initcall_##fn __used __section(.security_initcall.init) = fn
注册
这些入口有个共同的特征,它们都是使用__define_initcall宏定义的。它们的调用也不是随便的,而是按照一定顺序的,这个顺序就取决于__define_initcall宏。__define_initcall宏用来将指定的函数指针放到.initcall.init节里。
.initcall.init节
内核可执行文件由许多链接在一起的对象文件组成。对象文件有许多节,如文本、数据、init数据、bass等等。这些对象文件都是由一个称为链接器脚本的文件链接并装入的。这个链接器脚本的功能是将输入对象文件的各节映射到输出文件中;换句话说,它将所有输入对象文件都链接到单一的可执行文件中,将该可执行文件的各节装入到指定地址处。 vmlinux.lds是存在于arch/<target>/目录中的内核链接器脚本,它负责链接内核的各个节并将它们装入内存中特定偏移量处。在vmlinux.lds文件里查找initcall.init就可以看到下面的内容
#define INITCALLS *(.initcallearly.init) VMLINUX_SYMBOL(__early_initcall_end) = .; *(.initcall0.init) *(.initcall0s.init) *(.initcall1.init) *(.initcall1s.init) *(.initcall2.init) *(.initcall2s.init) *(.initcall3.init) *(.initcall3s.init) *(.initcall4.init) *(.initcall4s.init) *(.initcall5.init) *(.initcall5s.init) *(.initcallrootfs.init) *(.initcall6.init) *(.initcall6s.init) *(.initcall7.init) *(.initcall7s.init)
这就告诉我们.initcall.init节又分成了7个子节,而xxx_initcall入口函数指针具体放在哪一个子节里边儿是由xxx_initcall的定义中,__define_initcall宏的参数决定的,比如core_initcall将函数指针放在.initcall1.init子节,device_initcall将函数指针放在了.initcall6.init子节等等。各个子节的顺序是确定的,即先调用.initcall1.init中的函数指针再调用.initcall2.init中的函数指针,等等。不同的入口函数被放在不同的子节中,因此也就决定了它们的调用顺序。
注意:设备驱动程序中常见的module_init(x)函数,查看init.h文件发现
/** * module_init() - driver initialization entry point * @x: function to be run at kernel boot time or module insertion * * module_init() will either be called during do_initcalls() (if * builtin) or at module insertion time (if a module). There can only * be one per module. */ #define module_init(x) __initcall(x); #define __initcall(fn) device_initcall(fn) /* Don‘t use these in modules, but some people do... */ #define early_initcall(fn) module_init(fn) #define core_initcall(fn) module_init(fn) #define postcore_initcall(fn) module_init(fn) #define arch_initcall(fn) module_init(fn) #define subsys_initcall(fn) module_init(fn) #define fs_initcall(fn) module_init(fn) #define device_initcall(fn) module_init(fn) #define late_initcall(fn) module_init(fn)
#define __define_initcall(level,fn) static initcall_t __initcall_##fn __used __attribute__((__section__(".initcall" level ".init"))) = fn /* Userspace initcalls shouldn‘t depend on anything in the kernel, so we‘ll * make them run first. */ #define __initcall(fn) __define_initcall("1", fn) #define __exitcall(fn) static exitcall_t __exitcall_##fn __exit_call = fn #define __init_call __used __section(.initcall.init)
这样推断 module_init 调用优先级为6低于subsys_initcall调用优先级4
调用
static void __init do_initcalls(void) { initcall_t *fn; for (fn = __early_initcall_end; fn < __initcall_end; fn++) do_one_initcall(*fn); /* Make sure there is no pending stuff from the initcall sequence */ flush_scheduled_work(); } int __init_or_module do_one_initcall(initcall_t fn) { int count = preempt_count(); int ret; if (initcall_debug) ret = do_one_initcall_debug(fn); else ret = fn(); msgbuf[0] = 0; if (ret && ret != -ENODEV && initcall_debug) sprintf(msgbuf, "error code %d ", ret); if (preempt_count() != count) { strlcat(msgbuf, "preemption imbalance ", sizeof(msgbuf)); preempt_count() = count; } if (irqs_disabled()) { strlcat(msgbuf, "disabled interrupts ", sizeof(msgbuf)); local_irq_enable(); } if (msgbuf[0]) { printk("initcall %pF returned with %s\n", fn, msgbuf); } return ret; }
IN BUILDING
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。