Linux -- 内存控制之oom kiiler机制及代码分析

          最近,线上一些内存比较内存占用敏感的应用,在访问峰值的时候,偶尔会被kill掉,导致服务重启。这是Linux一个叫out-of-memory kiiler的机制:

              http://linux-mm.org/OOM_Killer

          oom kiiler会在内存紧张的时候,会依次kill内存占用较高的进程,发送Signal 15(SIGTERM)。并在/var/log/message中进行记录。里面会记录一些如pid,process name,cpu mask,trace等信息,通过监控可以发现类似问题。今天特意分析了一下oom killer相关的选择机制,挖了一下代码,感觉该机制简单粗暴,不过效果还是挺明显的,给大家分享出来。

  •  oom killer初探 

        一个简单分配heap memroy的代码片段(big_mm.c):
#define block (1024L*1024L*MB)
#define MB 64L                                                                                                        
    unsigned long total = 0L; 
    for(;;) {
        // malloc big block memory and ZERO it !!
        char* mm = (char*) malloc(block);
        usleep(100000);
        if (NULL == mm) 
            continue;
        bzero(mm,block);
        total += MB; 
        fprintf(stdout,"alloc %lum mem\n",total);
    }   

        这里有2个地方需要注意:
        
        1、malloc是分配虚拟地址空间,如果不memset或者bzero,那么就不会触发physical allocate,不会映射物理地址,所以这里用bzero填充
        2、每次申请的block大小比较有讲究,Linux内核分为LowMemroy和HighMemroy,LowMemory为内存紧张资源,LowMemroy有个阀值,通过free -lm和

/proc/sys/vm/lowmem_reserve_ratio来查看当前low大小和阀值low大小。低于阀值时候才会触发oom killer,所以这里block的分配小雨默认的256M,否则如果每次申请512M(大于128M),malloc可能会被底层的brk这个syscall阻塞住,内核触发page cache回写或slab回收。

       测试:

       gcc big_mm.c -o big_mm ; ./big_mm & ./big_mm & ./big_mm &

       (同时启动多个big_mm进程争抢内存)       

       启动后,部分big_mm被killed,在/var/log/message下tail -n 1000 | grep -i oom 看到:

Apr 18 16:56:16 v125000100.bja kernel: : [22254383.898423] Out of memory: Kill process 24894 (big_mm) score 277 or sacrifice child
Apr 18 16:56:16 v125000100.bja kernel: : [22254383.899708] Killed process 24894, UID 55120, (big_mm) total-vm:2301932kB, anon-rss:2228452kB, file-rss:24kB
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738942] big_mm invoked oom-killer: gfp_mask=0x280da, order=0, oom_adj=0, oom_score_adj=0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738947] big_mm cpuset=/ mems_allowed=0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738950] Pid: 24893, comm: big_mm Not tainted 2.6.32-220.23.2.ali878.el6.x86_64 #1
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738952] Call Trace:
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738961]  [<ffffffff810c35e1>] ? cpuset_print_task_mems_allowed+0x91/0xb0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738968]  [<ffffffff81114d70>] ? dump_header+0x90/0x1b0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738973]  [<ffffffff810e1b2e>] ? __delayacct_freepages_end+0x2e/0x30
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738979]  [<ffffffff81213ffc>] ? security_real_capable_noaudit+0x3c/0x70
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738982]  [<ffffffff811151fa>] ? oom_kill_process+0x8a/0x2c0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738985]  [<ffffffff81115131>] ? select_bad_process+0xe1/0x120
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738989]  [<ffffffff81115650>] ? out_of_memory+0x220/0x3c0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738995]  [<ffffffff81125929>] ? __alloc_pages_nodemask+0x899/0x930
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.739001]  [<ffffffff81159c6a>] ? alloc_pages_vma+0x9a/0x150
        

       通过标红的部分可以看到big_mm占用了2301932K,anon-rss全部是mmap分配的大内存块。后面红色的CallTrace标识出来kernel oom-killer的stack,后面我们会针对该call trace分析一下oom killer的代码。

  •  oom killer机制分析 
我们触发了oom killer的机制,那么oom killer是计算出选择哪个进程kill呢?我们先来看一下kernel提供给用户态的/proc下的一些参数:

        /proc/[pid]/oom_adj ,该pid进程被oom killer杀掉的权重,介于 [-17,15]之间,越高的权重,意味着更可能被oom killer选中,-17表示禁止被kill掉。

        /proc/[pid]/oom_score,当前该pid进程的被kill的分数,越高的分数意味着越可能被kill,这个数值是根据oom_adj运算后的结果,是oom_killer的主要参考。

触发oom killer时/var/log/message打印了进程的score:

Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758297] [ pid ]   uid  tgid total_vm      rss cpu oom_adj oom_score_adj name
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758311] [  399]     0   399     2709      133   2     -17         -1000 udevd
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758314] [  810]     0   810     2847       43   0       0             0 svscanboot
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758317] [  824]     0   824     1039       21   0       0             0 svscan
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758320] [  825]     0   825      993       17   1       0             0 readproctitle
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758322] [  826]     0   826      996       16   0       0             0 supervise
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758325] [  827]     0   827      996       17   0       0             0 supervise
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758327] [  828]     0   828      996       16   0       0             0 supervise
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758330] [  829]     0   829      996       17   2       0             0 supervise
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758333] [  830]     0   830     6471      152   0       0             0 run
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758335] [  831]    99   831     1032       21   0       0             0 multilog

        所以,如果想修改被oom killer选中的概率,修改上树参数即可。

  •  oom killer 代码分析
             上面已经给出了相应策略,下面剖析一下kernel对应的代码,有个清晰认识。首先看一下call trace调用关系:

             __alloc_pages_nodemask分配内存 -> 发现内存不足(或低于low memory) out_of_memory -> 选中一个得分最高的processor进行select_bad_process -> kill
                 

            

/**
 * out_of_memory - kill the "best" process when we run out of memory
 */
void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
        int order, nodemask_t *nodemask, bool force_kill)
{
    // 等待notifier调用链返回,如果有内存了则跳过
    blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
    if (freed > 0)
        /* Got some memory back in the last second. */
        return;

    /*
     * 如果进程即将退出,则表明可能会有内存可以使用了
     */
    if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
        set_thread_flag(TIF_MEMDIE);
        return;
    }

    /*
     * 如果设置了sysctl的panic_on_oom,则内核直接panic
     */
    check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
	// 如果设置了oom_kill_allocating_task
        // 则杀死正在申请内存的processor
    if (sysctl_oom_kill_allocating_task && current->mm &&
        !oom_unkillable_task(current, NULL, nodemask) &&
        current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
        get_task_struct(current);
        oom_kill_process(current, gfp_mask, order, 0, totalpages, NULL,
                 nodemask,
                 "Out of memory (oom_kill_allocating_task)");
        goto out;
    }
    // 寻找bad指数最高的进程,kill
    p = select_bad_process(&points, totalpages, mpol_mask, force_kill);
    /* Found nothing?!?! Either we hang forever, or we panic. */
    if (!p) {
        dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
        panic("Out of memory and no killable processes...\n");
    }
    if (p != (void *)-1UL) {
        oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
                 nodemask, "Out of memory");
        killed = 1;
    }
out:
    /*
     * Give the killed threads a good chance of exiting before trying to
     * allocate memory again.
     */
    if (killed)
        schedule_timeout_killable(1);
}

        select_bad_process() 调用oom_badness计算权值:

/**
 * oom_badness - heuristic function to determine which candidate task to kill
 * 
 */
unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
              const nodemask_t *nodemask, unsigned long totalpages)
{
    long points;
    long adj;
    // 内部判断是否是pid为1的initd进程,是否是kthread内核进程,是否是其他cgroup,如果是则跳过
    if (oom_unkillable_task(p, memcg, nodemask))
        return 0;

    p = find_lock_task_mm(p);
    if (!p)
        return 0;
    // 获得/proc/[pid]/oom_adj权值
    adj = (long)p->signal->oom_score_adj;
    if (adj == OOM_SCORE_ADJ_MIN) {
        task_unlock(p);
        return 0;
    }

    // 获得进程RSS内存占用
    points = get_mm_rss(p->mm) + p->mm->nr_ptes +
         get_mm_counter(p->mm, MM_SWAPENTS);
    task_unlock(p);
    // 计算步骤如下
    /*
     * Root processes get 3% bonus, just like the __vm_enough_memory()
     * implementation used by LSMs.
     */
    if (has_capability_noaudit(p, CAP_SYS_ADMIN))
        adj -= 30;
    /* Normalize to oom_score_adj units */
    adj *= totalpages / 1000;
    points += adj;

    /*
     * Never return 0 for an eligible task regardless of the root bonus and
     * oom_score_adj (oom_score_adj can‘t be OOM_SCORE_ADJ_MIN here).
     */
    return points > 0 ? points : 1;
}

           总结,大家可以根据上述策略调整oom killer,禁止或者给oom_adj最小或偏小的值,也可以通过sysctl调节oom killer行为!!










Linux -- 内存控制之oom kiiler机制及代码分析,古老的榕树,5-wow.com

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。