【数据结构】——排序算法——1.3、二叉树排序
二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树(英语:ordered binary tree),排序二叉树(英语:sorted binary tree),是指一棵空树或者具有下列性质的二叉树:
- 若任意节点的左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值;
- 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 任意节点的左、右子树也分别为二叉查找树。
- 没有键值相等的节点(英语:no duplicate nodes)。二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。为O(log n)。二叉查找树是基础性数据结构,用于构建更为抽象的数据结构,如集合、multiset、关联数组等。
在二叉查找树b中查找x的过程为:
- 若b是空树,则搜索失败,否则:
- 若x等于b的根节点的数据域之值,则查找成功;否则:
- 若x小于b的根节点的数据域之值,则搜索左子树;否则:
- 查找右子树。
public class OrderTree { public static void main(String[] args) { /** * ***4*** * *2***6* * 1*3*5*7 * */ int[] a = {4,2,1,3,6,5,7,8,9}; BTree root = new BTree(); createOrder(a, root); System.out.println("\npre order:"); preOrder(root); System.out.println("\nmid order:"); midOrder(root); System.out.println("\nlast order:"); lastOrder(root); List<Point> points = new ArrayList<Point>(); // 将tree的节点转化为坐标 int floors = totalfloor(root); System.out.println("\nfloors:"+floors); printTree(root, points, 0, -1,floors); // 按照 row,col 对 坐标进行排序方便打印 Collections.sort(points); // 按每点 5个字符宽进行打印(需要进行坐标系转换), 当data==-1时 显示 * int row = 0; StringBuilder sb = new StringBuilder(); int totalLength = 1*(squat(2, floors)-1); for(Point p : points){ if(row == p.row){ sb.append(printTimes("*",1*p.col-sb.length())); sb.append(printWidth(""+p.data, 1)); }else{ if(sb.length()< totalLength){ sb.append(printTimes("*", totalLength-sb.length())); } System.out.println(sb.toString()); sb = new StringBuilder(); row++; sb.append(printTimes("*",1*p.col-sb.length())); sb.append(printWidth(""+p.data, 1)); } } if(sb.length()< totalLength){ sb.append(printTimes("*", totalLength-sb.length())); } System.out.println(sb.toString()); } static int totalfloor(BTree root){ if(root == null)return 0; return internalLoop(root, 0); } static int internalLoop(BTree root,int floor){ if(root != null){ floor++; int left = internalLoop(root.left, floor); int right = internalLoop(root.right, floor); return Math.max(left, right); } else return floor; } static String printTimes(String s,int time){ StringBuilder sb = new StringBuilder(); for(int i=0;i<time;i++){ sb.append(s); } return sb.toString(); } static String printWidth(String s ,int width){ if(s == null ){ return printTimes(" ", width); }else{ if(s.length() < width){ return new StringBuilder(s).append(printTimes("*", width-s.length())).toString(); }else{ return s.substring(0,width); } } } static class Point implements Comparable<Point>{ public Point(int row,int col,int data){ this.row = row; this.col = col; this.data = data; } int row = 0; int col = 0; int data = -1; @Override public int compareTo(Point o) { if(this.row == o.row){ if(col == o.col) return 0; else if(col < o.col){ return -1; }else{ return 1; } }else if(row < o.row){ return -1; }else{ return 1; } } } static void printTree(BTree root,List<Point> points,int row,int col,int floors){ if(root != null){ int inter = squat(2, floors-1)-1; if(col == -1){ col = inter; } /** * ***0*** * *0***0* * 0*0*0*0 * */ points.add(new Point(row, col, root.data)); printTree(root.left,points,row+1, col - ((inter-1)/2)-1,floors -1); printTree(root.right,points,row+1,col + (inter-1)/2+1 ,floors -1); } } static int squat(int s,int b){ if(b == 0) return 1; int result = 1; for(int i=0;i<b ;i++){ result *=s; } return result; } static void preOrder(BTree root){ if(root == null) { return ; } System.out.print("-"+root.data); preOrder(root.left); preOrder(root.right); } static void midOrder(BTree root){ if(root == null) return ; midOrder(root.left); System.out.print("-"+root.data); midOrder(root.right); } static void lastOrder(BTree root){ if(root == null) return ; lastOrder(root.left); lastOrder(root.right); System.out.print("-"+root.data); } // 左边小,右边大,相等时放左边 static void createOrder(int[] a,BTree root){ if(a == null || a.length == 0) return ; for(int i=0;i<a.length;i++){ if(i==0){ root.data = a[i]; }else{ BTree leaf = new BTree(); leaf.data = a[i]; insert(root,leaf); } } } static void insert(BTree root,BTree leaf){ if(root.data == leaf.data){ // == 放左边 if(root.left == null){ root.left = leaf; }else{ insert(root.left,leaf); } }else if(root.data > leaf.data){ // > 放左边 if(root.left == null){ root.left = leaf; }else{ insert(root.left,leaf); } }else{ // < 放右边 if(root.right == null){ root.right = leaf; }else{ insert(root.right,leaf); } } } static class BTree{ BTree left; BTree right; int data; } }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。