简单易学的机器学习算法——因子分解机(Factorization Machine)
一、因子分解机FM的模型
1、因子分解机FM的优势
2、因子分解机FM的模型
二、因子分解机FM算法
- 回归问题(Regression)
- 二分类问题(Binary Classification)
- 排序(Ranking)
1、回归问题(Regression)
2、二分类问题(Binary Classification)
三、因子分解机FM算法的求解过程
1、交叉项系数
2、模型的求解
3、基于随机梯度的方式求解
四、实验(求解二分类问题)
1、实验的代码:
#coding:UTF-8 from __future__ import division from math import exp from numpy import * from random import normalvariate#正态分布 from datetime import datetime trainData = 'E://data//diabetes_train.txt' testData = 'E://data//diabetes_test.txt' featureNum = 8 def loadDataSet(data): dataMat = [] labelMat = [] fr = open(data)#打开文件 for line in fr.readlines(): currLine = line.strip().split() #lineArr = [1.0] lineArr = [] for i in xrange(featureNum): lineArr.append(float(currLine[i + 1])) dataMat.append(lineArr) labelMat.append(float(currLine[0]) * 2 - 1) return dataMat, labelMat def sigmoid(inx): return 1.0 / (1 + exp(-inx)) def stocGradAscent(dataMatrix, classLabels, k, iter): #dataMatrix用的是mat, classLabels是列表 m, n = shape(dataMatrix) alpha = 0.01 #初始化参数 w = zeros((n, 1))#其中n是特征的个数 w_0 = 0. v = normalvariate(0, 0.2) * ones((n, k)) for it in xrange(iter): print it for x in xrange(m):#随机优化,对每一个样本而言的 inter_1 = dataMatrix[x] * v inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v)#multiply对应元素相乘 #完成交叉项 interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2. p = w_0 + dataMatrix[x] * w + interaction#计算预测的输出 loss = sigmoid(classLabels[x] * p[0, 0]) - 1 print loss w_0 = w_0 - alpha * loss * classLabels[x] for i in xrange(n): if dataMatrix[x, i] != 0: w[i, 0] = w[i, 0] - alpha * loss * classLabels[x] * dataMatrix[x, i] for j in xrange(k): v[i, j] = v[i, j] - alpha * loss * classLabels[x] * (dataMatrix[x, i] * inter_1[0, j] - v[i, j] * dataMatrix[x, i] * dataMatrix[x, i]) return w_0, w, v def getAccuracy(dataMatrix, classLabels, w_0, w, v): m, n = shape(dataMatrix) allItem = 0 error = 0 result = [] for x in xrange(m): allItem += 1 inter_1 = dataMatrix[x] * v inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v)#multiply对应元素相乘 #完成交叉项 interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2. p = w_0 + dataMatrix[x] * w + interaction#计算预测的输出 pre = sigmoid(p[0, 0]) result.append(pre) if pre < 0.5 and classLabels[x] == 1.0: error += 1 elif pre >= 0.5 and classLabels[x] == -1.0: error += 1 else: continue print result return float(error) / allItem if __name__ == '__main__': dataTrain, labelTrain = loadDataSet(trainData) dataTest, labelTest = loadDataSet(testData) date_startTrain = datetime.now() print "开始训练" w_0, w, v = stocGradAscent(mat(dataTrain), labelTrain, 20, 200) print "训练准确性为:%f" % (1 - getAccuracy(mat(dataTrain), labelTrain, w_0, w, v)) date_endTrain = datetime.now() print "训练时间为:%s" % (date_endTrain - date_startTrain) print "开始测试" print "测试准确性为:%f" % (1 - getAccuracy(mat(dataTest), labelTest, w_0, w, v))
2、实验结果:
五、几点疑问
def sigmoid(inx): #return 1.0 / (1 + exp(-inx)) return 1. / (1. + exp(-max(min(inx, 15.), -15.)))
欢迎更多的朋友一起讨论这个算法。
参考文章
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。