JAVA的八种排序
在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例
初始状态 57 68 59 52
第一步 (68>57,不处理)
第二步 57<59<68 插在57之后
第三步 52<57,插在57之前
java实现
public class insertSort { public insertSort(){ int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; int temp=0; for(int i=1;i<a.length;i++){ int j=i-1; temp=a[i]; for(;j>=0&&temp<a[j];j--){ a[j+1]=a[j]; //将大于temp的值整体后移一个单位 } a[j+1]=temp; } for(int i=0;i<a.length;i++) System.out.println(a[i]); } public static void main(String[] args) { // TODO Auto-generated method stub new insertSort(); } }
2 希尔排序(最小增量排序)
算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
java实现
public class shellSort { public shellSort(){ int a[]={1,54,6,3,78,34,12,45,56,100}; double d1=a.length; int temp=0; while(true){ d1= Math.ceil(d1/2); int d=(int) d1; for(int x=0;x<d;x++){ for(int i=x+d;i<a.length;i+=d){ int j=i-d; temp=a[i]; for(;j>=0&&temp<a[j];j-=d){ a[j+d]=a[j]; } a[j+d]=temp; } } if(d==1) break; } for(int i=0;i<a.length;i++) System.out.println(a[i]); } public static void main(String[] args) { // TODO Auto-generated method stub new shellSort(); } }
3 简单选择排序
在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
java实现
public class selectSort { public selectSort() { int a[] = { 1, 54, 6, 3, 78, 34, 12, 45 }; int position = 0; for (int i = 0; i < a.length; i++) { int j = i + 1; position = i; int temp = a[i]; for (; j < a.length; j++) { if (a[j] < temp) { temp = a[j]; position = j; } } a[position] = a[i]; a[i] = temp; } for (int i = 0; i < a.length; i++) System.out.println(a[i]); } /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub new selectSort(); } }
基本思想:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
java实现
import java.util.Arrays; public class HeapSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; public HeapSort(){ heapSort(a); } public void heapSort(int[] a){ System.out.println("开始排序"); int arrayLength=a.length; //循环建堆 for(int i=0;i<arrayLength-1;i++){ //建堆 buildMaxHeap(a,arrayLength-1-i); //交换堆顶和最后一个元素 swap(a,0,arrayLength-1-i); System.out.println(Arrays.toString(a)); } } private void swap(int[] data, int i, int j) { // TODO Auto-generated method stub int tmp=data[i]; data[i]=data[j]; data[j]=tmp; } //对data数组从0到lastIndex建大顶堆 private void buildMaxHeap(int[] data, int lastIndex) { // TODO Auto-generated method stub //从lastIndex处节点(最后一个节点)的父节点开始 for(int i=(lastIndex-1)/2;i>=0;i--){ //k保存正在判断的节点 int k=i; //如果当前k节点的子节点存在 while(k*2+1<=lastIndex){ //k节点的左子节点的索引 int biggerIndex=2*k+1; //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在 if(biggerIndex<lastIndex){ //若果右子节点的值较大 if(data[biggerIndex]<data[biggerIndex+1]){ //biggerIndex总是记录较大子节点的索引 biggerIndex++; } } //如果k节点的值小于其较大的子节点的值 if(data[k]<data[biggerIndex]){ //交换他们 swap(data,k,biggerIndex); //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 k=biggerIndex; }else{ break; } } } } public static void main(String[] args) { // TODO Auto-generated method stub new HeapSort(); } }
5 冒泡排序
在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
java实现
public class bubbleSort { /*冒泡排序*/ public bubbleSort(){ int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; int temp=0; for(int i=0;i<a.length-1;i++){ for(int j=0;j<a.length-1-i;j++){ if(a[j]>a[j+1]){ temp=a[j]; a[j]=a[j+1]; a[j+1]=temp; } } } for(int i=0;i<a.length;i++) System.out.println(a[i]); } public static void main(String[] args) { // TODO Auto-generated method stub new bubbleSort(); } }
6 快速排序
选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
java实现
/*快速排序*/ public class quickSort { int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 }; public quickSort() { quick(a); for (int i = 0; i < a.length; i++) System.out.println(a[i]); } public int getMiddle(int[] list, int low, int high) { int tmp = list[low]; // 数组的第一个作为中轴 while (low < high) { while (low < high && list[high] >= tmp) { high--; } list[low] = list[high]; // 比中轴小的记录移到低端 while (low < high && list[low] <= tmp) { low++; } list[high] = list[low]; // 比中轴大的记录移到高端 } list[low] = tmp; // 中轴记录到尾 return low; // 返回中轴的位置 } public void _quickSort(int[] list, int low, int high) { if (low < high) { int middle = getMiddle(list, low, high); // 将list数组进行一分为二 _quickSort(list, low, middle - 1); // 对低字表进行递归排序 _quickSort(list, middle + 1, high); // 对高字表进行递归排序 } } public void quick(int[] a2) { if (a2.length > 0) { // 查看数组是否为空 _quickSort(a2, 0, a2.length - 1); } } public static void main(String[] args) { // TODO Auto-generated method stub new quickSort(); } }
7 归并排序
归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
java实现
import java.util.Arrays; /*归并排序*/ public class mergingSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; public mergingSort(){ sort(a,0,a.length-1); for(int i=0;i<a.length;i++) System.out.println(a[i]); } public void sort(int[] data, int left, int right) { // TODO Auto-generated method stub if(left<right){ //找出中间索引 int center=(left+right)/2; //对左边数组进行递归 sort(data,left,center); //对右边数组进行递归 sort(data,center+1,right); //合并 merge(data,left,center,right); } } public void merge(int[] data, int left, int center, int right) { // TODO Auto-generated method stub int [] tmpArr=new int[data.length]; int mid=center+1; //third记录中间数组的索引 int third=left; int tmp=left; while(left<=center&&mid<=right){ //从两个数组中取出最小的放入中间数组 if(data[left]<=data[mid]){ tmpArr[third++]=data[left++]; }else{ tmpArr[third++]=data[mid++]; } } //剩余部分依次放入中间数组 while(mid<=right){ tmpArr[third++]=data[mid++]; } while(left<=center){ tmpArr[third++]=data[left++]; } //将中间数组中的内容复制回原数组 while(tmp<=right){ data[tmp]=tmpArr[tmp++]; } System.out.println(Arrays.toString(data)); } public static void main(String[] args) { // TODO Auto-generated method stub new mergingSort(); } }
8 基数排序
将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
java实现
import java.util.ArrayList; import java.util.List; /*基数排序*/ public class radixSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18,23,34,15,35,25,53,51}; public radixSort(){ sort(a); for(int i=0;i<a.length;i++) System.out.println(a[i]); } public void sort(int[] array){ //首先确定排序的趟数; int max=array[0]; for(int i=1;i<array.length;i++){ if(array[i]>max){ max=array[i]; } } int time=0; //判断位数; while(max>0){ max/=10; time++; } //建立10个队列; List<ArrayList> queue=new ArrayList<ArrayList>(); for(int i=0;i<10;i++){ ArrayList<Integer> queue1=new ArrayList<Integer>(); queue.add(queue1); } //进行time次分配和收集; for(int i=0;i<time;i++){ //分配数组元素; for(int j=0;j<array.length;j++){ //得到数字的第time+1位数; int x=array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i); ArrayList<Integer> queue2=queue.get(x); queue2.add(array[j]); queue.set(x, queue2); } int count=0;//元素计数器; //收集队列元素; for(int k=0;k<10;k++){ while(queue.get(k).size()>0){ ArrayList<Integer> queue3=queue.get(k); array[count]=queue3.get(0); queue3.remove(0); count++; } } } } public static void main(String[] args) { // TODO Auto-generated method stub new radixSort(); } }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。