Java for LeetCode 207 Course Schedule 【Unsolved】
There are a total of n courses you have to take, labeled from 0
to n - 1
.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
解题思路一:
把每个节点放到图里,然后对每个节点进行BFS,如果出现自环,则为false,否则返回true,JAVA实现如下:
static public boolean canFinish(int numCourses, int[][] prerequisites) { if (prerequisites.length == 0 || prerequisites[0].length == 0) return true; HashMap<Integer, UndirectedGraphNode> hm = new HashMap<Integer, UndirectedGraphNode>(); for (int[] nums : prerequisites) for (int i = 0; i < nums.length - 1; i++) { if (!hm.containsKey(nums[i])) hm.put(nums[i], new UndirectedGraphNode(nums[i])); if (!hm.containsKey(nums[i + 1])) hm.put(nums[i + 1], new UndirectedGraphNode(nums[i + 1])); hm.get(nums[i]).neighbors.add(hm.get(nums[i + 1])); } Iterator<Integer> iterator = hm.keySet().iterator(); while (iterator.hasNext()) if (haveLoop(hm.get(iterator.next()))) return false; return true; } static boolean haveLoop(UndirectedGraphNode root) { HashMap<UndirectedGraphNode, Boolean> hm = new HashMap<UndirectedGraphNode, Boolean>(); Queue<UndirectedGraphNode> queue = new LinkedList<UndirectedGraphNode>(); hm.put(root, true); queue.add(root); while (!queue.isEmpty()) { UndirectedGraphNode temp = queue.poll(); for (UndirectedGraphNode temp2 : temp.neighbors) { if (temp2 == root) return true; if (!hm.containsKey(temp2)) { hm.put(temp2, true); queue.add(temp2); } } } return false; }
结果TLE,问题在于判断有向图是否有环的时候,对每一个节点判断其实浪费了很多时间%>_<%
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。