RMQ之ST算法
1 #include <stdio.h> 2 #include <string.h> 3 const int N = 100; 4 int a[N]; 5 int dp[N][33]; 6 inline int min(const int &a, const int &b) 7 { 8 return a < b ? a : b; 9 } 10 11 /* 12 dp[i][j] 表示以i开头的,长度为2^j的区间中的最小值 13 很明显dp[i][0] = a[i]; 14 且转移方程为 dp[i][j] = min(dp[i][j-1], dp[i+(1<<(j-1)][j-1]); 将区间分为2个2^(j-1)的小区间 15 */ 16 void RMQ_init(int n) 17 { 18 int i,j; 19 for(i=1; i<=n; ++i) dp[i][0] = a[i]; 20 for(j=1; (1<<j)<=n; ++j) 21 for(i=0; i+(1<<j)-1<=n; ++i) 22 dp[i][j] = min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);//将区间分为2个2^(j-1)的小区间,dp的思想 23 } 24 25 //令2^k <= R-L+1, 则以L开头,以R结尾的长度为2^k的区间合起来,就覆盖了区间[L,R] 26 //2^k <= R-L+1, 则2^k的长度为区间[L,R]的半数以上,所以以L开头,以R结尾的长度为2^k的区间能够覆盖区间[L,R] 27 int RMQ(int L, int R) 28 { 29 int k = 0; 30 while(1<<(k+1) <= R-L+1) k++; 31 return min(dp[L][k], dp[R-(1<<k)+1][k]); 32 } 33 int main() 34 { 35 int n ,i,L,R; 36 scanf("%d",&n); 37 for(i=1; i<=n; ++i) 38 scanf("%d",&a[i]); 39 RMQ_init(n); 40 while(scanf("%d%d",&L,&R)!=EOF) 41 { 42 printf("%d\n",RMQ(L,R)); 43 } 44 return 0; 45 }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。