数据结构--AVL树的insert()的Java实现
一个AVL树是其每个节点的左子树和右子树的高度差最多差1的二叉查找树;AVL树是一种最古老的平衡查找树
上代码:
package com.itany.avlshu; public class AVLTree<T extends Comparable<?super T>> { private static class AvlNode<T> { private int height; private T element; private AvlNode<T> left; private AvlNode<T> right; public AvlNode(T element) { this(element,null,null); } public AvlNode(T element,AvlNode<T> left,AvlNode right) { this.element=element; this.left=left; this.right=right; height=0; } } private int height(AvlNode<T> node) { return (node==null)?-1:node.height; } private int compare(T x, T element) { return x.compareTo(element); } private AvlNode<T> insert(T x,AvlNode<T> t) { if(t==null) return new AvlNode<T>(x,null,null);//创造出来时 默认height=0 int compareResult=compare(x,t.element); if(compareResult<0) { t.left=insert(x,t.left); //做完了插入之后 立马比较t的左右儿子的高度差是否等于2 若是 则进行相应旋转 若不是那么下一步 直接更新这个t的height值 //此时左边儿子高度比较大 if(height(t.left)-height(t.right)==2) { //下面分两种旋转情况 一种是单旋转 另一种是双旋转 if(compare(x,t.left.element)<0) t=rotateWithLeftChild(t); else t=doubleRotateWithLeftChild(t); } } else if(compareResult>0) { t.right=insert(x,t.right); //做完了插入之后 立马比较t的左右儿子的高度差是否等于2 若是 则进行相应旋转 若不是那么下一步 直接更新这个t的height值 //此时右边儿子高度比较大 if(height(t.right)-height(t.left)==2) { //下面分两种旋转情况 一种是单旋转 另一种是双旋转 if(compare(x,t.right.element)<0) t=doubleRotateWithRightChild(t); else t=rotateWithRightChild(t); } } else ; t.height=Math.max(height(t.left), height(t.right))+1;//+1是加一个自己 return t; } private AvlNode<T> rotateWithRightChild(AvlNode<T> k1) { AvlNode<T> k2=k1.right; k1.right=k2.left; k2.left=k1; k2.height=Math.max(height(k2.left),height(k2.right))+1; k1.height=Math.max(height(k1.left),height(k1.right))+1; return k2; } private AvlNode<T> doubleRotateWithRightChild(AvlNode<T> k3) { k3.right=rotateWithLeftChild(k3.right); return rotateWithRightChild(k3); } //双旋转是由两次单旋转得来 private AvlNode<T> doubleRotateWithLeftChild(AvlNode<T> k3) { k3.left=rotateWithRightChild(k3.left); return rotateWithLeftChild(k3); } private AvlNode<T> rotateWithLeftChild(AvlNode<T> k2) { AvlNode<T> k1=k2.left; k2.left=k1.right; k1.right=k2; k2.height=Math.max(height(k2.left),height(k2.right))+1; k1.height=Math.max(height(k1.left),height(k1.right))+1; return k1; } }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。