二分图(H-K算法)
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?
Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= si <= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
The absolute value of all coordinates is less than 10000.
2 1 2 1 0 3 3 0 3 2 4 0 6 0 1 2 1 1 2 3 3 2 2 2 2 4 4
Scenario #1: 2 Scenario #2: 2
#include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<string> #include<iostream> #include<queue> #include<cmath> #include<map> #include<stack> #include<set> using namespace std; #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i ) #define CLEAR( a , x ) memset ( a , x , sizeof a ) typedef long long LL; typedef pair<int,int>pil; const int maxn=3000+100; int head[maxn]; int mx[maxn],my[maxn]; int dx[maxn],dy[maxn]; int used[maxn]; struct Node{ int x,y; int s; }e[maxn]; struct node{ int x,y; }pos[maxn]; struct edge{ int u,v; int next; }ee[maxn*maxn]; int cas,t,n,m,cnt,num,dis; bool SearchP() { queue<int>q; dis=0x3f3f3f3f; CLEAR(dx,-1); CLEAR(dy,-1); REPF(i,1,n) if(mx[i]==-1) { q.push(i); dx[i]=0; } while(!q.empty()) { int u=q.front(); q.pop(); if(dx[u]>dis) break; for(int i=head[u];i!=-1;i=ee[i].next) { int v=ee[i].v; if(dy[v]==-1) { dy[v]=dx[u]+1; if(my[v]==-1) dis=dy[v]; else { dx[my[v]]=dy[v]+1; q.push(my[v]); } } } } return dis!=0x3f3f3f3f; } bool dfs(int u) { for(int i=head[u];i!=-1;i=ee[i].next) { int v=ee[i].v; if(!used[v]&&dy[v]==dx[u]+1) { used[v]=1; if(my[v]!=-1&&dy[v]==dis) continue; if(my[v]==-1||dfs(my[v])) { my[v]=u; mx[u]=v; return true; } } } return false; } void work() { int res=0; CLEAR(mx,-1); CLEAR(my,-1); while(SearchP()) { CLEAR(used,0); REPF(i,1,n) if(mx[i]==-1&&dfs(i)) res++; } printf("Scenario #%d:\n%d\n\n",++num,res); } bool ok(int i,int j) { double d=sqrt((double)(e[i].x-pos[j].x)*(e[i].x-pos[j].x)+(double)(e[i].y-pos[j].y)*(e[i].y-pos[j].y)); return d/e[i].s<=t; } void addedge(int u,int v) { ee[cnt].u=u;ee[cnt].v=v; ee[cnt].next=head[u]; head[u]=cnt++; } int main() { int x,y,w; num=0; scanf("%d",&cas); while(cas--) { CLEAR(head,-1);cnt=0; scanf("%d%d",&t,&n); REPF(i,1,n) scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].s); scanf("%d",&m); REPF(i,1,m) { scanf("%d%d",&pos[i].x,&pos[i].y); REPF(j,1,n) if(ok(j,i)) addedge(j,i); } work(); } return 0; }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。