(tarjan算法) poj 1236

Network of Schools
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 12079   Accepted: 4810

Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B 
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school. 

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

水题。。。。。。。。。。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<vector>
#include<stack>
using namespace std;
#define maxn 105
int n,Dfs[maxn],use[maxn],top,newflag,low[maxn],mp[maxn][maxn],out[maxn];
bool isstack[maxn];
int in[maxn],sum1,sum2;
stack<int> s;
void init()
{
    sum1=0,sum2=0;
    memset(Dfs,0,sizeof(Dfs));
    memset(use,0,sizeof(use));
    memset(low,0,sizeof(low));
    memset(mp,0,sizeof(mp));
    memset(out,0,sizeof(out));
    memset(in,0,sizeof(in));
    memset(isstack,0,sizeof(isstack));
    while(!s.empty()) s.pop();
    top=0,newflag=0;
}
void tarjan(int u)
{
    Dfs[u]=low[u]=++top;
    s.push(u);
    isstack[u]=1;
    for(int i=1;i<=n;i++)
    {
        if(!mp[u][i]) continue;
        if(!Dfs[i])
        {
            tarjan(i);
            low[u]=min(low[i],low[u]);
        }
        else if(isstack[i])
        {
            low[u]=min(low[u],Dfs[i]);
        }
    }
    if(Dfs[u]==low[u])
    {
        newflag++;
        int x;
        do
        {
            x=s.top();
            s.pop();
            isstack[x]=0;
            use[x]=newflag;
        }while(x!=u);
    }
    return ;
}
int main()
{
    int x;
    while(scanf("%d",&n)!=EOF)
    {
        init();
        for(int i=1;i<=n;i++)
        {
            while(scanf("%d",&x)&&x)
            {
                mp[i][x]=1;
            }
        }
        for(int i=1;i<=n;i++)
        {
            if(!Dfs[i])
                tarjan(i);
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(mp[i][j]&&use[i]!=use[j])
                {
                    out[use[i]]++;
                    in[use[j]]++;
                }
            }
        }
        for(int i=1;i<=newflag;i++)
        {
            if(out[i]==0)
                sum1++;
            if(in[i]==0)
                sum2++;
        }
        if(newflag==1)
            sum1=0;
        else
            sum1=max(sum1,sum2);
        printf("%d\n%d\n",sum2,sum1);
    }
    return 0;
}

  

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。