python的 map和filter函数

一, map     #基本的map运用都可以用解析去替代,复杂的仍然需要定义函数,利用map去做

map(函数, 序列) 将序列的各项经过函数处理, 然后返回到一个新列表中。 #itertools.imap()

>>> s
[‘a‘, ‘b‘, ‘c‘, ‘d‘]

>>> exp1 = map(ord, s)      #s 也可以是字符串, 元组, 字典
>>> exp1
[97, 98, 99, 100]

序列的个数根据前面的函数而定, ord()一次接受一个,所以后面只有一个序列。

>>> add = lambda x, y: x+y

>>> map(add, {‘a‘:‘djsfld‘, ‘b‘: ‘dgfasg‘}, ‘fg‘)  #自定义了一个add函数,接受两个参数,所以后面是两个可迭代的对象。
[‘af‘, ‘bg‘]

注意,后面的两个对象长度必须一致, map不具有不短和截长的功能。

而zip会将长的多余部分给截去, 如:

>>> zip( {‘a‘:‘djsfld‘, ‘b‘: ‘dgfasg‘}, ‘fgf‘)  
[(‘a‘, ‘f‘), (‘b‘, ‘g‘)]           #可以一次循环多个对象,itertools.izip()

在python3* 中,返回的不是列表,而是可迭代对象,可以通过list()函数得到以上结果。

>>> def xixi(x,y):
...     if x>y: return x+y
...     else: return y
...

 >>> map(xixi, ‘abcdefg‘, [‘e‘,‘a‘,‘c‘,‘b‘,‘f‘,‘t‘,‘j‘])
[‘e‘, ‘ba‘, ‘c‘, ‘db‘, ‘f‘, ‘t‘, ‘j‘]

 

二, filter      #基本的filter运用都可以用解析去替代, 复杂的仍然要自定义函数,利用filter去做,这也许是map和filter依然存在的原因。

filter(过滤函数, 列表)  将列表中的元素经过函数,如果返回True, 就放到一个新的列表中,如果返回False, 就不放进去。#itertools.dropwhile

filter只能一次处理一个元素。所以后面只有一个序列。

>>> def hehe(x):
...     if ord(x)>100:return True
...     else: return False
...
>>> filter(hehe, ‘av‘)
‘v‘

 

>>> filter((lambda x:x>0), range(-5,5))
[1, 2, 3, 4]

在python3*中返回的不直接是列表,而是一个迭代器。可以用list()查看结果。

 

三, reduce

对每队元素都应用函数并运行到最后结果。

 >>> reduce((lambda x, y: x+y),range(-5,5))
-5

算法是这样的:(((((((((-5+-4)+-3)+ -2)+ -1)+ 0)+ 1)+ 2)+ 3)+ 4) = -5

 

 

by freemao

FAFU

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。