hdu 5195 DZY Loves Topological Sorting BestCoder Round #35 1002 [ 拓扑排序 + 优先队列 || 线段树 ]

DZY Loves Topological Sorting

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 221    Accepted Submission(s): 52


Problem Description
A topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge (uv)技术分享 from vertex u技术分享 to vertex v技术分享 , u技术分享 comes before v技术分享 in the ordering.
Now, DZY has a directed acyclic graph(DAG). You should find the lexicographically largest topological ordering after erasing at most k技术分享 edges from the graph.
 

 

Input
The input consists several test cases. (TestCase5技术分享 )
The first line, three integers n,m,k(1n,m10技术分享5技术分享,0km)技术分享 .
Each of the next m技术分享 lines has two integers: u,v(uv,1u,vn)技术分享 , representing a direct edge(uv)技术分享 .
 

 

Output
For each test case, output the lexicographically largest topological ordering.
 

 

Sample Input
5 5 2 1 2 4 5 2 4 3 4 2 3 3 2 0 1 2 1 3
 

 

Sample Output
5 3 1 2 4 1 3 2
Hint
Case 1. Erase the edge (2->3),(4->5). And the lexicographically largest topological ordering is (5,3,1,2,4).
 

 

Source
 

 

Recommend
hujie   |   We have carefully selected several similar problems for you:  5197 5196 5193 5192 5189 
 
 
http://bestcoder.hdu.edu.cn/
 
Problem B - DZY Loves Topological Sorting
因为我们要求最后的拓扑序列字典序最大,所以一定要贪心地将标号越大的点越早入队。我们定义点i的入度为di。假设当前还能删去k条边,那么我们一定会把当前还没入队的dik的最大的i找出来,把它的di条入边都删掉,然后加入拓扑序列。可以证明,这一定是最优的。
具体实现可以用线段树维护每个位置的di,在线段树上二分可以找到当前还没入队的dik的最大的i。于是时间复杂度就是O((n+m)logn).


不过,这里面说的还有一点不太清楚,
转一下另一个题解:
http://blog.csdn.net/glqac/article/details/44710897

看题意以为是个拓扑排序。事实上,就是个线段树。因为最多可以删k条边, 所以就是在线段树里找入度小于等于k的最大值,那么保存个区间最小就ok了。如果右子树的区间最小小于等于k那么就往右边走,因为是要找字典序最大的。当k是0,也是这样找,就跟topological sort是一样的。然后删除一个点就在线段树那个点置最大值,再删除他的边。因为总共也就m条边不超过10^5。

总复杂度o(n+m)logn。

 

我的解法:

用优先队列,当前节点的入度小于k便入队列,出队列时以节点编号为优先权,如果小于等于k,则输出,反之,跳过。不过写的时候遇到几个问题:

1.节点重复入队列没事,但是,不能让已经在队列中的再入队列。故要用vis,vis=0暂时不在队列中,vis=-1,在队列中,vis=1,已经输出。

2.判断队首元素的入度是否 小于k时,要用现在的入度,而不是入队列时的入度,因为,可能在处理其它点的时候,该点的入度已经发生了变化。

 

总的来说,还是线段树的方法思路清晰~~

 

13278084 2015-03-29 08:49:19 Accepted 5195 561MS 6988K 2158 B C++ czy
13278083 2015-03-29 08:49:04 Time Limit Exceeded 5195 2000MS 8308K 2158 B G++ czy

 

  1 #include <cstdio>
  2 #include <cstring>
  3 #include <stack>
  4 #include <vector>
  5 #include <map>
  6 #include <algorithm>
  7 #include <queue>
  8 
  9 #define ll long long
 10 int const N = 100005;
 11 int const M = 205;
 12 int const inf = 1000000000;
 13 ll const mod = 1000000007;
 14 
 15 using namespace std;
 16 
 17 int n,m;
 18 int k;
 19 int vis[N];
 20 vector<int> bian[N];
 21 int r[N];
 22 
 23 struct node
 24 {
 25     friend bool operator < (node n1,node n2)
 26     {
 27         return n1.index  < n2.index;
 28     }
 29     int index;
 30     int d;
 31 };
 32 
 33 void ini()
 34 {
 35     int u,v;
 36     memset(r,0,sizeof(r));
 37     memset(vis,0,sizeof(vis));
 38     int i;
 39     for(i=0;i<=n;i++){
 40         bian[i].clear();
 41     }
 42     for(i=1;i<=m;i++){
 43         scanf("%d%d",&u,&v);
 44         r[ v ]++;
 45         bian[ u ].push_back( v );
 46     }
 47 
 48 }
 49 
 50 void solve()
 51 {
 52     node te,nt;
 53     int i;
 54     priority_queue<node> que;
 55     for(i=n;i>=1;i--){
 56         if(r[ i ]<=k){
 57             te.index=i;
 58             te.d=r[i];
 59             que.push(te);
 60             vis[i]=-1;
 61         }
 62     }
 63 
 64     int ff=0;
 65     vector<int>::iterator it;
 66     while(que.size()>=1){
 67         te=que.top();
 68         que.pop();
 69        // printf(" \nu=%d r=%d k=%d\n",te.index,te.d,k);
 70         if(r[te.index]<=k){
 71             k-=r[te.index];
 72             vis[te.index]=1;
 73         }
 74         else{
 75             vis[te.index]=0;
 76             continue;
 77         }
 78         if(ff==0){
 79             ff=1;
 80             printf("%d",te.index);
 81         }
 82         else{
 83             printf(" %d",te.index);
 84         }
 85         for(it=bian[te.index].begin();it!=bian[te.index].end();it++)
 86         {
 87             int y=*it;
 88             r[y]--;
 89             if(r[y]<=k && vis[y]==0){
 90                 nt.index=y;
 91                 nt.d=r[y];
 92                 que.push(nt);
 93                 vis[y]=-1;
 94             }
 95         }
 96     }
 97     printf("\n");
 98 }
 99 
100 void out()
101 {
102 
103 }
104 
105 int main()
106 {
107     //freopen("data.in","r",stdin);
108     //freopen("data.out","w",stdout);
109     //scanf("%d",&T);
110     //for(int cnt=1;cnt<=T;cnt++)
111     //while(T--)
112     while(scanf("%d%d%d",&n,&m,&k)!=EOF)
113     {
114         ini();
115         solve();
116         out();
117     }
118 }

 

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。