聊聊高并发(三十)解析java.util.concurrent各个组件(十二) 理解CyclicBarrier栅栏

这篇讲讲CyclicBarrier栅栏,从它的名字可以看出,它是可循环使用的。它的功能和CountDownLatch类似,也是让一组线程等待,然后一起开始往下执行。但是两者还是有几个区别

1. 等待的对象不同。CountDownLatch的一组线程等待的是一个事件,或者说是一个计数器归0的事件。而CyclicBarrier等待的对象是线程,只有线程都到齐了才往下执行

2. 使用方式不同,这个也是由等待的对象不同引起的,CountDownLatch需要调用await()来让线程等待,调用countDown()来修改状态,直到触发状态为0的事件。而CyclicBarrier只需要调用await()让线程等待,当调用await()方法的线程数满足条件,就自动唤醒所有线程往下执行

3. CyclicBarrier可以自动循环使用,当一次拦截被打开后,会自动创建下一个拦截。CountDownLatch的计数器归0后不能再次使用

4. 底层实现不同,CountDownLatch使用AQS来实现底层同步,CyclicBarrier基于更上层的ReetrantLock + Condition条件队列实现

5. 失效机制不同,在CountDownLatch等待的线程如果被中断或者超时取消,不会影响其他线程。而CyclicBarrier采用all-or-none的机制,要么全部不通过,要么全部都通过,也就是说一旦在CyclicBarrier等待的线程有一个被中断或者超时取消,那么其他所有在这个CyclicBarrier等待的线程都被唤醒,通过栅栏往下执行

6. CyclicBarrier支持线程全部通过之后的回调功能,通过传入一个Runnable对象,由最后一个到达的线程来执行。而CountDownLatch不支持回调机制


下面看看CyclicBarrier的源代码,它有一个内部类Generation来处理循环使用的问题,维护了一个broker状态表示当前的栅栏是否失效。如果失效,可以重置栅栏的状态。当栅栏被打破时,就设置当前generation的broker为true表示失效,并唤醒所有等待的线程,即all-or-none机制

private static class Generation {
        boolean broken = false;
    }

private void nextGeneration() {
        // signal completion of last generation
        trip.signalAll();
        // set up next generation
        count = parties;
        generation = new Generation();
    }

private void breakBarrier() {
        generation.broken = true;
        count = parties;
        trip.signalAll();
    }


维护了一个ReentrantLock来作同步,并创建了一个相关的条件队列Condition,使用Condition的await()方法让线程在同一个条件队列等待,使用Condition.signalAll()唤醒所有在通过一条件队列等待的线程。

/** The lock for guarding barrier entry */
    private final ReentrantLock lock = new ReentrantLock();
    /** Condition to wait on until tripped */
    private final Condition trip = lock.newCondition();

维护了一个Runnable引用来支持回调功能

/* The command to run when tripped */
    private final Runnable barrierCommand;

public CyclicBarrier(int parties, Runnable barrierAction) {
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;
        this.count = parties;
        this.barrierCommand = barrierAction;
    }

维护了一个count来计数,当await()方法被调用一次, count就减1,直到count为0打开栅栏。

private int count;

可以看到CyclicBarrier的实例属性都没有使用volatile变量,那它怎么保证状态的可见性呢?CyclicBarrier使用了加显式锁的方式。我们知道显式锁和内置锁一样,都保证了可见性,有序性和原子性。

1. 进入锁相当于读volatile,会清空CPU缓存,强制从内存读取

2. 离开锁相当于写volatile,会把CPU写缓冲区的数据强制刷新到内存


CyclicBarrier常用支持普通的等待和限时的等待。最后都是落到了dowait()方法。

public int await() throws InterruptedException, BrokenBarrierException {
        try {
            return dowait(false, 0L);
        } catch (TimeoutException toe) {
            throw new Error(toe); // cannot happen;
        }
    }

public int await(long timeout, TimeUnit unit)
        throws InterruptedException,
               BrokenBarrierException,
               TimeoutException {
        return dowait(true, unit.toNanos(timeout));
    }

来看看dowait方法

1. 必须先获取锁,保证了可见性,有序性,原子性

2. 判断当前栅栏的状态,如果已经失效,抛出BrokerBarrierException异常

3. 如果线程被中断,那么让栅栏失效,会唤醒所有等待线程往下执行

4. 执行一次dowait就对count减一,用index记录下当前线程执行是的count值作为索引

5. 如果index == 0表示是最后到达的线程,可以打开栅栏了。首先如果有回调,就执行回调。然后重置栅栏状态,使之可以循环使用,返回0

6. 如果index不为0,表示不是最后到达的线程,就轮询等待,这里支持了限时操作,使用了Condition条件队列的await()机制。直到超时或者栅栏被正常失效。栅栏失效后会使用Condition来唤醒所有在同一个条件队列等待的线程。

private int dowait(boolean timed, long nanos)
        throws InterruptedException, BrokenBarrierException,
               TimeoutException {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            final Generation g = generation;

            if (g.broken)
                throw new BrokenBarrierException();

            if (Thread.interrupted()) {
                breakBarrier();
                throw new InterruptedException();
            }

           int index = --count;
           if (index == 0) {  // tripped
               boolean ranAction = false;
               try {
                   final Runnable command = barrierCommand;
                   if (command != null)
                       command.run();
                   ranAction = true;
                   nextGeneration();
                   return 0;
               } finally {
                   if (!ranAction)
                       breakBarrier();
               }
           }

            // loop until tripped, broken, interrupted, or timed out
            for (;;) {
                try {
                    if (!timed)
                        trip.await();
                    else if (nanos > 0L)
                        nanos = trip.awaitNanos(nanos);
                } catch (InterruptedException ie) {
                    if (g == generation && ! g.broken) {
                        breakBarrier();
                        throw ie;
                    } else {
                        // We're about to finish waiting even if we had not
                        // been interrupted, so this interrupt is deemed to
                        // "belong" to subsequent execution.
                        Thread.currentThread().interrupt();
                    }
                }

                if (g.broken)
                    throw new BrokenBarrierException();

                if (g != generation)
                    return index;

                if (timed && nanos <= 0L) {
                    breakBarrier();
                    throw new TimeoutException();
                }
            }
        } finally {
            lock.unlock();
        }
    }

下面使用一个测试用例来测试CyclicBarrier的功能

1. 创建一个5个容量的CyclicBarrier,并设置回调

2. 运行12个线程

package com.lock.test;

import java.util.concurrent.CyclicBarrier;

public class CyclicBarrierUsecase {
	private CyclicBarrier barrier = new CyclicBarrier(5, new Runnable(){

		@Override
		public void run() {
			System.out.println("Callback is running");
		}
		
		
	});
	
	public void race() throws Exception{
		System.out.println("Thread " + Thread.currentThread().getName() + " is waiting the resource");
		barrier.await();
		System.out.println("Thread " + Thread.currentThread().getName() + " got the resource");
	}
	
	public static void main(String[] args){
		final CyclicBarrierUsecase usecase = new CyclicBarrierUsecase();
		
		for(int i = 0; i < 12; i++){
			Thread t = new Thread(new Runnable(){

				@Override
				public void run() {
					try {
						usecase.race();
					} catch (Exception e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}
				}
				
			}, String.valueOf(i));
			t.start();
		}
	}
}

测试结果:

1. 可以看到5个线程在等待,直到满5个线程到达之后打开栅栏,这5个线程往下执行,并执行回调

2. 栅栏被循环使用了,又有5个线程等待,直到满5个线程到达又打开栅栏往下执行,并执行回调

3. 栅栏又被循环使用,但是只有2个线程,不满5个,就一直等待

Thread 0 is waiting the resource
Thread 4 is waiting the resource
Thread 5 is waiting the resource
Thread 3 is waiting the resource
Thread 2 is waiting the resource
Callback is running
Thread 1 is waiting the resource
Thread 0 got the resource
Thread 2 got the resource
Thread 6 is waiting the resource
Thread 7 is waiting the resource
Thread 4 got the resource
Thread 9 is waiting the resource
Thread 8 is waiting the resource
Thread 3 got the resource
Thread 5 got the resource
Callback is running
Thread 8 got the resource
Thread 1 got the resource
Thread 7 got the resource
Thread 6 got the resource
Thread 10 is waiting the resource
Thread 11 is waiting the resource
Thread 9 got the resource

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。