python 分词计算文档TF-IDF值并排序

文章来自于我的个人博客:python 分词计算文档TF-IDF值并排序

该程序实现的功能是:首先读取一些文档,然后通过jieba来分词,将分词存入文件,然后通过sklearn计算每个分词文档中的tf-idf值,再将文档排序输入一个大文件中

依赖包:

sklearn

jieba

注:此程序参考了一位同行的程序后进行了修改

# -*- coding: utf-8 -*-
"""
@author: jiangfuqiang
"""

import os
import jieba
import jieba.posseg as pseg
import sys
import re
import time
import string
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
reload(sys)

sys.setdefaultencoding(‘utf-8‘)

def getFileList(path):
    filelist = []
    files = os.listdir(path)
    for f in files:
        if f[0] == ‘.‘:
            pass
        else:
            filelist.append(f)
    return filelist,path

def fenci(filename,path,segPath):
    f = open(path +"/" + filename,‘r+‘)
    file_list = f.read()
    f.close()

     #保存粉刺结果的目录

    if not os.path.exists(segPath):
        os.mkdir(segPath)

    #对文档进行分词处理
    seg_list = jieba.cut(file_list,cut_all=True)
    #对空格,换行符进行处理
    result = []
    for seg in seg_list:
        seg = ‘‘.join(seg.split())
        reg = ‘w+‘
        r = re.search(reg,seg)
        if seg != ‘‘ and seg != ‘
‘ and seg != ‘

‘ and seg != ‘=‘ and 
                        seg != ‘[‘ and seg != ‘]‘ and seg != ‘(‘ and seg != ‘)‘ and not r:
            result.append(seg)

    #将分词后的结果用空格隔开,保存至本地
    f = open(segPath+"/"+filename+"-seg.txt","w+")
    f.write(‘ ‘.join(result))
    f.close()

#读取已经分词好的文档,进行TF-IDF计算
def Tfidf(filelist,sFilePath,path):
    corpus = []
    for ff in filelist:
        fname = path + ff
        f = open(fname+"-seg.txt",‘r+‘)
        content = f.read()
        f.close()
        corpus.append(content)

    vectorizer = CountVectorizer()
    transformer = TfidfTransformer()
    tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus))
    word = vectorizer.get_feature_names()  #所有文本的关键字
    weight = tfidf.toarray()


    if not os.path.exists(sFilePath):
        os.mkdir(sFilePath)

    for i in range(len(weight)):
        print u‘----------writing all the tf-idf in the ‘,i,u‘file into ‘, sFilePath+‘/‘ +string.zfill(i,5)+".txt"
        f = open(sFilePath+"/"+string.zfill(i,5)+".txt",‘w+‘)
        for j in range(len(word)):
            f.write(word[j] + "  " + str(weight[i][j]) + "
")
        f.close()


if __name__ == "__main__":
    #保存tf-idf的计算结果目录
    sFilePath = "/home/lifeix/soft/allfile/tfidffile"+str(time.time())
    #保存分词的目录
    segPath = ‘/home/lifeix/soft/allfile/segfile‘
    (allfile,path) = getFileList(‘/home/lifeix/soft/allkeyword‘)
    for ff in allfile:
        print "Using jieba on " + ff
        fenci(ff,path,segPath)

    Tfidf(allfile,sFilePath,segPath)
    #对整个文档进行排序
    os.system("sort -nrk 2 " + sFilePath+"/*.txt >" + sFilePath + "/sorted.txt")

python 分词计算文档TF-IDF值并排序,古老的榕树,5-wow.com

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。