POJ 2349 Arctic Network(最小生成树)
Time Limit: 2000MS | Memory Limit: 65536K | |
Description
Any two outposts with a satellite channel can communicate via the satellite, regardless of their location. Otherwise, two outposts can communicate by radio only if the distance between them does not exceed D, which depends of the power of the transceivers. Higher power yields higher D but costs more. Due to purchasing and maintenance considerations, the transceivers at the outposts must be identical; that is, the value of D is the same for every pair of outposts.
Your job is to determine the minimum D required for the transceivers. There must be at least one communication path (direct or indirect) between every pair of outposts.
Input
Output
Sample Input
1 2 4 0 100 0 300 0 600 150 750
Sample Output
212.13
题意:有S颗卫星和P个哨所,有卫星的两个哨所之间可以任意通信;否则,一个哨所只能和距离它小于等于D的哨所通信。给出卫星的数量和P个哨所的坐标,求D的最小值。
分析:这是一个最小生成树问题。P个哨所最多用P-1条边即可连起来,而S颗卫星可以代替S-1条边,基于贪心思想,代替的边越长,求得的D就越小。所以可以用一个数组保存加入最小生成树的边的长度,共有P-1条边,把前S-1条较长的边代替掉,剩下的边中最长的即为所求,即d[(P-1) - (S-1) - 1] = d[P-S-1]。
#include<stdio.h> #include<math.h> #include<algorithm> using namespace std; int father[550], m, k; double d[550]; struct post { double x, y; }p[550]; struct edge { int u, v; double w; }e[500005]; bool comp(edge e1, edge e2) { return e1.w < e2.w; } double get_dis(double x1, double y1, double x2, double y2) { return sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2)); } void Init(int n) { for(int i = 1; i <= n; i++) father[i] = i; } int Find(int x) { if(x != father[x]) father[x] = Find(father[x]); return father[x]; } void Merge(int a, int b) { int p = Find(a); int q = Find(b); if(p > q) father[p] = q; else father[q] = p; } void Kruskal(int n) { k = 0; double Max = 0; for(int i = 0; i < m; i++) if(Find(e[i].u) != Find(e[i].v)) { Merge(e[i].u, e[i].v); d[k++] = e[i].w; n--; if(n == 1) return; } } int main() { int t, S, P, i, j; double x, y; scanf("%d",&t); while(t--) { m = 0; scanf("%d%d",&S,&P); Init(P); for(i = 1; i <= P; i++) scanf("%lf%lf",&p[i].x, &p[i].y); for(i = 1; i <= P; i++) for(j = i + 1; j <= P; j++) { e[m].u = i; e[m].v = j; e[m++].w = get_dis(p[i].x, p[i].y, p[j].x, p[j].y); e[m].u = j; e[m].v = i; e[m++].w = get_dis(p[i].x, p[i].y, p[j].x, p[j].y); } sort(e, e+m, comp); Kruskal(P); printf("%.2lf\n",d[P-S-1]); } return 0; }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。