Rightmost Digit

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6667 Accepted Submission(s): 1721
 
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
 
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
 
Output
For each test case, you should output the rightmost digit of N^N.
 
Sample Input
2
3
4
 
Sample Output
7
6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
 
Author
Ignatius.L
 

 思路: long long int 因为已知容易超出限制 ,所以此处一定要注意 ,另外,利用/2的方式进行 这样可以大大缩短程序运行时间。

技术分享
 1 #include<stdio.h> 
 2 //大数问题 
 3 long long  Solve(long long  n)
 4 {
 5      long long int count=n;
 6      long long int result=1;
 7      while(count)
 8      {
 9          if(count%2!=0)
10          {
11              result*=n;
12            if(result>=10)
13              result=result%10;
14         }
15         n*=n;
16         n=n%10;       
17          count/=2;
18      }
19      return result;
20 }
21 
22 
23 int main(int argc, char *argv[])
24 {
25     long long  T,N;
26     scanf("%lld",&T);
27     while(T--)
28     {
29         scanf("%lld",&N);
30         printf("%lld\n",Solve(N));
31         
32     } 
33     return 0;
34 }
View Code

 

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。