一个http请求在play框架中的前世今生(下)
上一篇提到了play底层的网络通信基于netty实现,于是粗略地研究了一下netty,总结如下。(netty版本是3.2.5,不同版本的实现可能差异较大)
一、netty的组件
channelBuffer:
传输Buffer和抽象后的逻辑Buffer的结合,将NIO底层的多个buffer合并成了一个可以代表完整消息内容的buffer,可以理解为一个message
channel:
对于Java的old IO和NIO的输入|输出通道的一个封装
channelPipeline:
Netty的ChannelPipeline包含两条线路:Upstream和Downstream。Upstream对应上行,接收到的消息、被动的状态改变,都属于Upstream。Downstream则对应下行,发送的消息、主动的状态改变,都属于Downstream。ChannelPipeline接口包含了两个重要的方法:sendUpstream(ChannelEvent e)和sendDownstream(ChannelEvent e),就分别对应了Upstream和Downstream。
handler:
ChannelPipeline里包含的ChannelHandler也包含两类:ChannelUpstreamHandler和ChannelDownstreamHandler。每条线路的Handler是互相独立的。它们都很简单的只包含一个方法:ChannelUpstreamHandler.handleUpstream和ChannelDownstreamHandler.handleDownstream。
handler要实现messageReceive方法,在这里面做特定协议的实现
@Override
public void messageReceived(final ChannelHandlerContext ctx, final MessageEvent messageEvent) throws Exception {
//do something
}
二、编程模型
1.实现自己的handler
2.实现自己的pipeline factory,将handler注册到pipeline中
3.在netty启动类中指定自己的pipeline
三、线程模型(Reactor模式)
netty的线程模型采用了reactor模式,如下图,boss线程(reactor)使用selector接收请求,然后委派给acceptor,worker线程(图中的线程池表示)从acceptor领取任务并执行。
----------------------------------------------初始化过程-----------------------------------------------------------------
通过阅读Netty中的NioServerSocketChannelFactory类的代码,可以详细了解reactor模式对应的组件的初始化过程。
NioServerSocketChannelFactory负责构造一个NioServerSocket,包含一个ChannelSink的引用,ChannelSink中管理着worker线程池:
NioServerSocketPipelineSink(Executor workerExecutor, int workerCount) {
workers = new NioWorker[workerCount];
for (int i = 0; i < workers.length; i ++) {
workers[i] = new NioWorker(id , i + 1, workerExecutor);
}
}
NioServerSocketPipelineSink实现ChannelSink接口,包含eventSunk方法,负责severSocker绑定到tcp端口时的初始化工作和建立新的客户端socket连接的处理。如下述代码所示:
public void eventSunk(
ChannelPipeline pipeline, ChannelEvent e) throws Exception {
Channel channel = e.getChannel();
if (channel instanceof NioServerSocketChannel) {//serverSocket绑定端口和创建channel
handleServerSocket(e);
} else if (channel instanceof NioSocketChannel) {//client socket的连接建立
handleAcceptedSocket(e);
}
handlerServerSocket会调用如下的bind方法,初始化扮演mainReactor角色的Boss线程。
private void bind(
NioServerSocketChannel channel, ChannelFuture future,
SocketAddress localAddress) {
boolean bound = false ;
boolean bossStarted = false;
try {
channel. socket.socket().bind(localAddress, channel.getConfig().getBacklog());
bound = true;
future.setSuccess();
fireChannelBound(channel, channel.getLocalAddress());
Executor bossExecutor =
((NioServerSocketChannelFactory) channel.getFactory()).bossExecutor ;
DeadLockProofWorker. start(
bossExecutor,
new ThreadRenamingRunnable(
new Boss(channel),
"New I/O server boss #" + id + " (" + channel + ‘)‘));
bossStarted = true;
} catch (Throwable t) {
future.setFailure(t);
fireExceptionCaught(channel, t);
} finally {
if (!bossStarted && bound) {
close(channel, future);
}
}
}
----------------------------------------------初始化过程-----------------------------------------------------------------
到此为止Boss线程使用NIO的selector监听我们制定的socket端口是否有客户端连接的IO事件发生,它的主循环loop如下:
public void run() {
final Thread currentThread = Thread.currentThread();
channel. shutdownLock.lock();
for (;;) {
if (selector .select(1000) > 0) {
selector.selectedKeys().clear();
}
SocketChannel acceptedSocket = channel. socket.accept();
if (acceptedSocket != null) {
registerAcceptedChannel(acceptedSocket, currentThread);
}
}
}
只干了一件事情,就是讲接收到的客户端sokcet连接注册到Acceptor中。为了提高boss线程的处理效率?注册工作会被抽象成一个runnable对象,放入注册任务队列中,交给worker线程池来执行。worker的主循环如下:
thread = Thread.currentThread();
boolean shutdown = false;
Selector selector = this.selector ;
for (;;) {
wakenUp.set( false);
try {
SelectorUtil. select(selector);
if (wakenUp .get()) {
selector.wakeup();
}
cancelledKeys = 0;
processRegisterTaskQueue();
processWriteTaskQueue();
processSelectedKeys(selector.selectedKeys());
} catch (Throwable t) {
logger.warn(
"Unexpected exception in the selector loop." , t);
}
}
}
worker中采用了流水线模式,在每一次循环中,执行以下三个任务:
1.从acceptor中拿到mainReactor中接收的客户端连接,注册到自己的selector中(每个worker一个selector)
2.如果写任务队里中有数据需要执行,取出一个写任务并执行
3.对于已经注册到selector的channel,处理它的read或write IO事件。
四、play线程与netty线程的协作
play线程和netty线程的对于请求的协作处理过程如下:
请求->netty master->netty worker->自己启动一个新的线程->netty response->netty worker。
下面是协作过程的详细分析:
1.netty worker转交请求处理工作给play
PlayHandler里的messageRecived:
public void messageReceived(ChannelHandlerContext ctx, MessageEvent e)
throws Exception{
....
Invoker.invoke(new NettyInvokation(request, response, ctx, nettyRequest, e));
}
通过在messageReceived中向线程池提交任务的方式来完成request的业务逻辑处理部分,messageReceived结束后,worker线程脱离这个request,这个request不再会占用worker了。这样不但可以保持长连接不关闭,而且不会占用netty的worker线程。
2.play将写回数据响应交回给netty worker
playHandler用来返回响应数据的copyResponse方法,底层会委托给下面这个方法:
public static ChannelFuture write(Channel channel, Object message, SocketAddress remoteAddress) {
ChannelFuture future = future(channel);
channel.getPipeline().sendDownstream(
new DownstreamMessageEvent(channel, future, message, remoteAddress));
return future;
}
可见返回的数据以message为载体又回到了channel中注册的pipeline中,netty的每一个pipeline最后都有一个channelSink负责收尾工作,对于Play应用,这个sink是上面提到的NioServerSocketPipelineSink
private void handleAcceptedSocket (ChannelEvent e) {
if (e instanceof ChannelStateEvent) {
//此处省略
} else if (e instanceof MessageEvent) {
MessageEvent event = (MessageEvent) e;
NioSocketChannel channel = (NioSocketChannel) event.getChannel();
boolean offered = channel.writeBuffer .offer(event);
assert offered;
channel. worker.writeFromUserCode(channel);
}
}
worker的writeFromUserCode方法会将写任务放入worker的写任务队列中,然后等待worker的主循环来处理
void writeFromUserCode(final NioSocketChannel channel) {
if (!channel.isConnected()) {
cleanUpWriteBuffer(channel);
return;
}
if (scheduleWriteIfNecessary(channel)) {//放入worker的写任务队列
return;
}
// From here, we are sure Thread.currentThread() == workerThread.
if (channel.writeSuspended ) {
return;
}
if (channel.inWriteNowLoop ) {
return;
}
write0(channel);
}
如果在一次循环中write0方法没有写完数据,write0方法还会主动设置channel的OP_WRITE状态,让主循环的processSelectedKeys方法来处理,一直到数据写完,才清除这个OP_WRITE状态。
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。