Android SparseArray源码分析

前言

昨晚想在Android应用中增加一个int映射到String的字典表,使用HashMap实现的时候,Eclipse给出了一个警告,昨晚项目上线紧张,我直接给忽略了,今天看了一下具体的Eclipse提示如下:
Use new SparseArray<String> (...) instead for better performance
这个警告的意思是使用SparseArray来替代,以获取更好的性能。

源码

因为SparseArray整体代码比较简单,先把源码展示出来,然后再分析为什么使用SparseArray会比使用HashMap有更好的性能。
public class SparseArray<E> implements Cloneable {
    private static final Object DELETED = new Object();
    private boolean mGarbage = false;

    private int[] mKeys;
    private Object[] mValues;
    private int mSize;

    /**
     * Creates a new SparseArray containing no mappings.
     */
    public SparseArray() {
        this(10);
    }

    /**
     * Creates a new SparseArray containing no mappings that will not
     * require any additional memory allocation to store the specified
     * number of mappings.  If you supply an initial capacity of 0, the
     * sparse array will be initialized with a light-weight representation
     * not requiring any additional array allocations.
     */
    public SparseArray(int initialCapacity) {
        if (initialCapacity == 0) {
            mKeys = ContainerHelpers.EMPTY_INTS;
            mValues = ContainerHelpers.EMPTY_OBJECTS;
        } else {
            initialCapacity = ArrayUtils.idealIntArraySize(initialCapacity);
            mKeys = new int[initialCapacity];
            mValues = new Object[initialCapacity];
        }
        mSize = 0;
    }

    @Override
    @SuppressWarnings("unchecked")
    public SparseArray<E> clone() {
        SparseArray<E> clone = null;
        try {
            clone = (SparseArray<E>) super.clone();
            clone.mKeys = mKeys.clone();
            clone.mValues = mValues.clone();
        } catch (CloneNotSupportedException cnse) {
            /* ignore */
        }
        return clone;
    }

    /**
     * Gets the Object mapped from the specified key, or <code>null</code>
     * if no such mapping has been made.
     */
    public E get(int key) {
        return get(key, null);
    }

    /**
     * Gets the Object mapped from the specified key, or the specified Object
     * if no such mapping has been made.
     */
    @SuppressWarnings("unchecked")
    public E get(int key, E valueIfKeyNotFound) {
        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);

        if (i < 0 || mValues[i] == DELETED) {
            return valueIfKeyNotFound;
        } else {
            return (E) mValues[i];
        }
    }

    /**
     * Removes the mapping from the specified key, if there was any.
     */
    public void delete(int key) {
        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);

        if (i >= 0) {
            if (mValues[i] != DELETED) {
                mValues[i] = DELETED;
                mGarbage = true;
            }
        }
    }

    /**
     * Alias for {@link #delete(int)}.
     */
    public void remove(int key) {
        delete(key);
    }

    /**
     * Removes the mapping at the specified index.
     */
    public void removeAt(int index) {
        if (mValues[index] != DELETED) {
            mValues[index] = DELETED;
            mGarbage = true;
        }
    }

    /**
     * Remove a range of mappings as a batch.
     *
     * @param index Index to begin at
     * @param size Number of mappings to remove
     */
    public void removeAtRange(int index, int size) {
        final int end = Math.min(mSize, index + size);
        for (int i = index; i < end; i++) {
            removeAt(i);
        }
    }

    private void gc() {
        // Log.e("SparseArray", "gc start with " + mSize);

        int n = mSize;
        int o = 0;
        int[] keys = mKeys;
        Object[] values = mValues;

        for (int i = 0; i < n; i++) {
            Object val = values[i];

            if (val != DELETED) {
                if (i != o) {
                    keys[o] = keys[i];
                    values[o] = val;
                    values[i] = null;
                }

                o++;
            }
        }

        mGarbage = false;
        mSize = o;

        // Log.e("SparseArray", "gc end with " + mSize);
    }

    /**
     * Adds a mapping from the specified key to the specified value,
     * replacing the previous mapping from the specified key if there
     * was one.
     */
    public void put(int key, E value) {
        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);

        if (i >= 0) {
            mValues[i] = value;
        } else {
            i = ~i;

            if (i < mSize && mValues[i] == DELETED) {
                mKeys[i] = key;
                mValues[i] = value;
                return;
            }

            if (mGarbage && mSize >= mKeys.length) {
                gc();

                // Search again because indices may have changed.
                i = ~ContainerHelpers.binarySearch(mKeys, mSize, key);
            }

            if (mSize >= mKeys.length) {
                int n = ArrayUtils.idealIntArraySize(mSize + 1);

                int[] nkeys = new int[n];
                Object[] nvalues = new Object[n];

                // Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
                System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
                System.arraycopy(mValues, 0, nvalues, 0, mValues.length);

                mKeys = nkeys;
                mValues = nvalues;
            }

            if (mSize - i != 0) {
                // Log.e("SparseArray", "move " + (mSize - i));
                System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i);
                System.arraycopy(mValues, i, mValues, i + 1, mSize - i);
            }

            mKeys[i] = key;
            mValues[i] = value;
            mSize++;
        }
    }

    /**
     * Returns the number of key-value mappings that this SparseArray
     * currently stores.
     */
    public int size() {
        if (mGarbage) {
            gc();
        }

        return mSize;
    }

    /**
     * Given an index in the range <code>0...size()-1</code>, returns
     * the key from the <code>index</code>th key-value mapping that this
     * SparseArray stores.
     *
     * <p>The keys corresponding to indices in ascending order are guaranteed to
     * be in ascending order, e.g., <code>keyAt(0)</code> will return the
     * smallest key and <code>keyAt(size()-1)</code> will return the largest
     * key.</p>
     */
    public int keyAt(int index) {
        if (mGarbage) {
            gc();
        }

        return mKeys[index];
    }

    /**
     * Given an index in the range <code>0...size()-1</code>, returns
     * the value from the <code>index</code>th key-value mapping that this
     * SparseArray stores.
     *
     * <p>The values corresponding to indices in ascending order are guaranteed
     * to be associated with keys in ascending order, e.g.,
     * <code>valueAt(0)</code> will return the value associated with the
     * smallest key and <code>valueAt(size()-1)</code> will return the value
     * associated with the largest key.</p>
     */
    @SuppressWarnings("unchecked")
    public E valueAt(int index) {
        if (mGarbage) {
            gc();
        }

        return (E) mValues[index];
    }

    /**
     * Given an index in the range <code>0...size()-1</code>, sets a new
     * value for the <code>index</code>th key-value mapping that this
     * SparseArray stores.
     */
    public void setValueAt(int index, E value) {
        if (mGarbage) {
            gc();
        }

        mValues[index] = value;
    }

    /**
     * Returns the index for which {@link #keyAt} would return the
     * specified key, or a negative number if the specified
     * key is not mapped.
     */
    public int indexOfKey(int key) {
        if (mGarbage) {
            gc();
        }

        return ContainerHelpers.binarySearch(mKeys, mSize, key);
    }

    /**
     * Returns an index for which {@link #valueAt} would return the
     * specified key, or a negative number if no keys map to the
     * specified value.
     * <p>Beware that this is a linear search, unlike lookups by key,
     * and that multiple keys can map to the same value and this will
     * find only one of them.
     * <p>Note also that unlike most collections' {@code indexOf} methods,
     * this method compares values using {@code ==} rather than {@code equals}.
     */
    public int indexOfValue(E value) {
        if (mGarbage) {
            gc();
        }

        for (int i = 0; i < mSize; i++)
            if (mValues[i] == value)
                return i;

        return -1;
    }

    /**
     * Removes all key-value mappings from this SparseArray.
     */
    public void clear() {
        int n = mSize;
        Object[] values = mValues;

        for (int i = 0; i < n; i++) {
            values[i] = null;
        }

        mSize = 0;
        mGarbage = false;
    }

    /**
     * Puts a key/value pair into the array, optimizing for the case where
     * the key is greater than all existing keys in the array.
     */
    public void append(int key, E value) {
        if (mSize != 0 && key <= mKeys[mSize - 1]) {
            put(key, value);
            return;
        }

        if (mGarbage && mSize >= mKeys.length) {
            gc();
        }

        int pos = mSize;
        if (pos >= mKeys.length) {
            int n = ArrayUtils.idealIntArraySize(pos + 1);

            int[] nkeys = new int[n];
            Object[] nvalues = new Object[n];

            // Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
            System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
            System.arraycopy(mValues, 0, nvalues, 0, mValues.length);

            mKeys = nkeys;
            mValues = nvalues;
        }

        mKeys[pos] = key;
        mValues[pos] = value;
        mSize = pos + 1;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This implementation composes a string by iterating over its mappings. If
     * this map contains itself as a value, the string "(this Map)"
     * will appear in its place.
     */
    @Override
    public String toString() {
        if (size() <= 0) {
            return "{}";
        }

        StringBuilder buffer = new StringBuilder(mSize * 28);
        buffer.append('{');
        for (int i=0; i<mSize; i++) {
            if (i > 0) {
                buffer.append(", ");
            }
            int key = keyAt(i);
            buffer.append(key);
            buffer.append('=');
            Object value = valueAt(i);
            if (value != this) {
                buffer.append(value);
            } else {
                buffer.append("(this Map)");
            }
        }
        buffer.append('}');
        return buffer.toString();
    }
}

首先,看一下SparseArray的构造函数:
    /**
     * Creates a new SparseArray containing no mappings.
     */
    public SparseArray() {
        this(10);
    }

    /**
     * Creates a new SparseArray containing no mappings that will not
     * require any additional memory allocation to store the specified
     * number of mappings.  If you supply an initial capacity of 0, the
     * sparse array will be initialized with a light-weight representation
     * not requiring any additional array allocations.
     */
    public SparseArray(int initialCapacity) {
        if (initialCapacity == 0) {
            mKeys = ContainerHelpers.EMPTY_INTS;
            mValues = ContainerHelpers.EMPTY_OBJECTS;
        } else {
            initialCapacity = ArrayUtils.idealIntArraySize(initialCapacity);
            mKeys = new int[initialCapacity];
            mValues = new Object[initialCapacity];
        }
        mSize = 0;
    }
从构造方法可以看出,这里也是预先设置了容器的大小,默认大小为10。

再来看一下添加数据操作:
    /**
     * Adds a mapping from the specified key to the specified value,
     * replacing the previous mapping from the specified key if there
     * was one.
     */
    public void put(int key, E value) {
        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);

        if (i >= 0) {
            mValues[i] = value;
        } else {
            i = ~i;

            if (i < mSize && mValues[i] == DELETED) {
                mKeys[i] = key;
                mValues[i] = value;
                return;
            }

            if (mGarbage && mSize >= mKeys.length) {
                gc();

                // Search again because indices may have changed.
                i = ~ContainerHelpers.binarySearch(mKeys, mSize, key);
            }

            if (mSize >= mKeys.length) {
                int n = ArrayUtils.idealIntArraySize(mSize + 1);

                int[] nkeys = new int[n];
                Object[] nvalues = new Object[n];

                // Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
                System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
                System.arraycopy(mValues, 0, nvalues, 0, mValues.length);

                mKeys = nkeys;
                mValues = nvalues;
            }

            if (mSize - i != 0) {
                // Log.e("SparseArray", "move " + (mSize - i));
                System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i);
                System.arraycopy(mValues, i, mValues, i + 1, mSize - i);
            }

            mKeys[i] = key;
            mValues[i] = value;
            mSize++;
        }
    }

再看查数据的方法:
    /**
     * Gets the Object mapped from the specified key, or <code>null</code>
     * if no such mapping has been made.
     */
    public E get(int key) {
        return get(key, null);
    }

    /**
     * Gets the Object mapped from the specified key, or the specified Object
     * if no such mapping has been made.
     */
    @SuppressWarnings("unchecked")
    public E get(int key, E valueIfKeyNotFound) {
        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);

        if (i < 0 || mValues[i] == DELETED) {
            return valueIfKeyNotFound;
        } else {
            return (E) mValues[i];
        }
    }

可以看到,在put数据和get数据的过程中,都统一调用了一个二分查找算法,其实这也就是SparseArray能够提升效率的核心。
    static int binarySearch(int[] array, int size, int value) {
        int lo = 0;
        int hi = size - 1;

        while (lo <= hi) {
            final int mid = (lo + hi) >>> 1;
            final int midVal = array[mid];

            if (midVal < value) {
                lo = mid + 1;
            } else if (midVal > value) {
                hi = mid - 1;
            } else {
                return mid;  // value found
            }
        }
        return ~lo;  // value not present
    }
个人认为(lo + hi) >>> 1的方法有些怪异,直接用 lo + (hi - lo) / 2更好一些。




郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。