记一次SQLServer的分页优化兼谈谈使用Row_Number()分页存在的问题
最近有项目反应,在服务器CPU使用较高的时候,我们的事件查询页面非常的慢,查询几条记录竟然要4分钟甚至更长,而且在翻第二页的时候也是要这么多的时间,这肯定是不能接受的,也是让现场用SQLServerProfiler
把语句抓取了上来。
用ROW_NUMBER()进行分页
我们看看现场抓上来的分页语句:
select top 20 a.*,ag.Name as AgentServerName,,d.Name as MgrObjTypeName,l.UserName as userName
from eventlog as a
left join mgrobj as b on a.MgrObjId=b.Id and a.AgentBm=b.AgentBm
left join addrnode as c on b.AddrId=c.Id
left join mgrobjtype as d on b.MgrObjTypeId=d.Id
left join eventdir as e on a.EventBm=e.Bm
left join agentserver as ag on a.AgentBm=ag.AgentBm
left join loginUser as l on a.cfmoper=l.loginGuid
where a.OrderNo not in (
select top 0 OrderNo
from eventlog as a
left join mgrobj as b on a.MgrObjId=b.Id
left join addrnode as c on b.AddrId=c.Id
where 1=1 and a.AlarmTime>=‘2014-12-01 00:00:00‘ and a.AlarmTime<=‘2014-12-26 23:59:59‘
and b.AddrId in (‘02109000‘,……,‘02109002‘)
order by AlarmTime desc
)
and 1=1 and a.AlarmTime>=‘2014-12-01 00:00:00‘ and a.AlarmTime<=‘2014-12-26 23:59:59‘
and b.AddrId in (‘02109000‘,……,‘02109002‘)
order by AlarmTime DESC
这是典型的使用两次top来进行分页的写法,原理是:先查出pageSize*(pageIndex-1)
(T1)的记录数,然后再Top
出PageSize
条不在T1中的记录,就是当前页的记录。这种查询效率不高主要是使用了not in
。参考我之前文章《程序猿是如何解决SQLServer占CPU100%的》提到的:“对于不使用SARG运算符的表达式,索引是没有用的”。
那么改为使用ROW_NUMBER
分页:
WITH cte AS(
select a.*,ag.Name as AgentServerName,d.Name as MgrObjTypeName,l.UserName as userName,b.AddrId
,ROW_NUMBER() OVER(ORDER BY AlarmTime DESC) AS RowNo
from eventlog as a WITH(FORCESEEK)
left join mgrobj as b on a.MgrObjId=b.Id and a.AgentBm=b.AgentBm
left join addrnode as c on b.AddrId=c.Id
left join mgrobjtype as d on b.MgrObjTypeId=d.Id
left join eventdir as e on a.EventBm=e.Bm
left join agentserver As ag on a.AgentBm=ag.AgentBm
left join loginUser as l on a.cfmoper=l.loginGuid
where a.AlarmTime>=‘2014-12-01 00:00:00‘ and a.AlarmTime<=‘2014-12-26 23:59:59‘
AND b.AddrId in (‘02109000‘,……,‘02109002‘)
)
SELECT * FROM cte WHERE RowNo BETWEEN 1 AND 20;
执行时间从14秒提升到5秒,这说明Row_Number分页还是比较高效的,而且这种写法比top top
分页优雅很多。
“欺骗”查询引擎让查询按你的期望去查询
但是为什么查询20条记录竟然要5秒呢,尤其在这个表是加上了时间索引的情况下——参考《程序猿是如何解决SQLServer占CPU100%的》中提到的索引。
我尝试去掉这句AND b.AddrId in (‘02109000‘,……,‘02109002‘)
,结果不到1秒就把538条记录查询出来了,而加上地点限制这句,结果是204行。为什么结果集不大,花费的时间却相差这么多呢?查看执行计划,发现走的是另外的索引,而非时间索引。
把这个疑问放到了SQLServer群上,很快,高桑给了回复:要想达到跟去掉地点限制这句的效果,就使用AdddrId+‘‘ in
。
什么意思?一时没看明白,是高桑没看懂我的语句?很快,有人补充,要欺骗查询引擎。“欺骗”?还是不懂,不过我照做了,把上述cte的语句原封不动的Copy出来,然后把这句AND b.AddrId in (‘02109000‘,……,‘02109002‘)
更改为了AND b.AddrId+‘‘ in (‘02109000‘,……,‘02109002‘)
,一点执行,神了!!!不到1秒就执行完了。在把执行计划一对,果然走的是时间索引:
后来回味了一下,记起之前看到的查询引擎优化原理,如果你的条件中带有运算符或者使用函数等,则查询引擎会放弃优化,而执行表扫描。脑袋突然转过来了,在使用b.AddrId+‘‘
前查询引擎尝试把mgrObj表加入一起做优化,那么两个表联查,会导致预估的记录数大大增加,而使用了b.AddrId+‘‘
,查询引擎则会先按时间索引把记录刷选出来,这样就达到了效果,即强制先做cte在执行in
条件,而不是在cte中进行in
条件刷选。原来如此!有时候,查询引擎过度的优化,会导致相反的效果,而你如果能够知道优化的原理,那么就可以通过一些小的技巧让查询引擎按你的期望去进行优化。
ROW_NUMBER()分页在页数较大时的问题
事情到这里,还没完。后面同事又跟我反应,查询到后面的页数,又卡了!what?我重新执行上述语句,把时间范围放到2011-12-01到2014-12-26,记录数限制为为19981到20000,果然,查询要30秒左右,查看执行计划,都是一样的,为什么?
高桑怀疑是key lookup过多导致的,建议先分页取出rid 再做key lookup。不懂这么一句是什么意思。把执行计划和IO打印出来:
看看IO,很明显,主要是越到后面的页数,其他的几个关联表读取的页数就越多。我推测,在Row_Number分页的时候,如果有表连接,则按排序一致到返回的记录数位置,前面的记录都是要参与表连接的,这就导致了越到后面的分页,就越慢,因为要扫描的关联表就越多。
难道就没有了办法了吗?这个时候宋桑英勇的站了出来:“你给表后加一个forceseek
提示可破”。这真是犹如天籁之音,马上进行尝试。
使用forceseek提示可以强制表走索引
查了下资料:
SQL Server2008中引入的提示
ForceSeek
,可以用它将索引查找来替换索引扫描
那么,就在eventlog表中加上这句看看会怎样?
果然,查询计划变了,开始提示,缺少了包含索引。赶紧加上,果然,按这个方式进行查询之后查询时间变为18秒,有进步!但是查看IO,跟上面一样,并没有变少。不过,总算学会了一个新的技能,而宋桑也很热心说晚上再帮忙看看。
把其他没参与where的表放到cte外面
根据上面的IO,很快,又有人提到,把其他left join
的表放到cte外面。这是个办法,于是把除eventlog
、mgrobj
、addrnode
的表放到外面,语句如下:
WITH cte AS(
select a*,b.AddrId,b.Name as MgrObjName,b.MgrObjTypeId
,ROW_NUMBER() OVER(ORDER BY AlarmTime DESC) AS RowNo
from eventlog as a
left join mgrobj as b on a.MgrObjId=b.Id and a.AgentBm=b.AgentBm
left join addrnode as c on b.AddrId=c.Id
where a.AlarmTime>=‘2011-12-01 00:00:00‘ and a.AlarmTime<=‘2014-12-26 23:59:59‘
AND b.AddrId+‘‘ in (‘02109000‘,……,‘02109002‘)
)
SELECT a.*
,ag.Name as AgentServerName
,d.Name as MgrObjTypeName,l.UserName as userName
FROM cte a left join eventdir as e on a.EventBm=e.Bm
left join mgrobjtype as d on a.MgrObjTypeId=d.Id
left join agentserver As ag on a.AgentBm=ag.AgentBm
left join loginUser as l on a.cfmoper=l.loginGuid
WHERE RowNo BETWEEN 19980 AND 20000;
果然有效,IO大大减少了,然后速度也提升到了16秒。
表 ‘loginuser‘。扫描计数 1,逻辑读取 63 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘agentserver‘。扫描计数 1,逻辑读取 1617 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘mgrobjtype‘。扫描计数 1,逻辑读取 126 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘eventdir‘。扫描计数 1,逻辑读取 42 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘addrnode‘。扫描计数 1,逻辑读取 119997 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘Worktable‘。扫描计数 0,逻辑读取 0 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘eventlog‘。扫描计数 1,逻辑读取 5027 次,物理读取 3 次,预读 5024 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘mgrobj‘。扫描计数 1,逻辑读取 24 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
我们看到,addrNode表还是扫描计数很大。那还能不能提升,这个时候,我想到了,先把addrNode
、mgrobj
、mgrobjtype
三个表联合查询,放到一个临时表,然后再和eventlog
做inner join
,然后查询结果再和其他表做left join
,这样还能减少IO。
使用临时表存储分页记录在进行表连接减少IO
IF OBJECT_ID(‘tmpMgrObj‘) IS NOT NULL DROP TABLE tmpMgrObj
SELECT m.Id,AddrId,MgrObjTypeId,AgentBM,m.Name,a.Name AS AddrName
INTO tmpMgrObj
FROM dbo.mgrobj m
INNER JOIN dbo.addrnode a ON a.Id=m.AddrId
WHERE AddrId IN(‘02109000‘,……,‘02109002‘);
WITH cte AS(
select a.*,b.AddrId,b.MgrObjTypeId
,ROW_NUMBER() OVER(ORDER BY AlarmTime DESC) AS RowNo
,ag.Name as AgentServerName
,d.Name as MgrObjTypeName,l.UserName as userName
from eventlog as a
INNER join tmpMgrObj as b on a.MgrObjId=b.Id and a.AgentBm=b.AgentBm
left join mgrobjtype as d on b.MgrObjTypeId=d.Id
left join agentserver As ag on a.AgentBm=ag.AgentBm
left join loginUser as l on a.cfmoper=l.loginGuid
WHERE AlarmTime>‘2011-12-01 00:00:00‘ AND AlarmTime<=‘2014-12-26 23:59:59‘
)
SELECT * FROM cte WHERE RowNo BETWEEN 19980 AND 20000
IF OBJECT_ID(‘tmpMgrObj‘) IS NOT NULL DROP TABLE tmpMgrObj
这次查询仅用了10秒。我们来看看IO:
表 ‘Worktable‘。扫描计数 0,逻辑读取 0 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘mgrobj‘。扫描计数 1,逻辑读取 24 次,物理读取 2 次,预读 23 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘addrnode‘。扫描计数 1,逻辑读取 6 次,物理读取 3 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
----------
表 ‘loginuser‘。扫描计数 0,逻辑读取 24 次,物理读取 1 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘Worktable‘。扫描计数 0,逻辑读取 0 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘eventlog‘。扫描计数 93,逻辑读取 32773 次,物理读取 515 次,预读 1536 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘tmpMgrObj‘。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘mgrobjtype‘。扫描计数 1,逻辑读取 6 次,物理读取 1 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘agentserver‘。扫描计数 1,逻辑读取 77 次,物理读取 2 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
除了eventlog之外,其他的表的IO大大减少,有木有?
强制使用hash join
经网友提示,在大的页数时,可以强制使用hash join
来减少IO,而且经过尝试,可以通过建立两个子查询来避免使用临时表。经过调整,最终优化的SQL语句如下:
SELECT *
,ag.Name AS AgentServerName
, l.UserName AS userName
FROM (
SELECT a.*,ROW_NUMBER() OVER (ORDER BY AlarmTime DESC) AS RowNo
, b.AddrName , b.Name AS MgrObjName
FROM
(SELECT *
FROM eventlog
WHERE AlarmTime>= ‘2011-12-01 00:00:00‘ AND AlarmTime< ‘2014-12-26 23:59:59‘) AS a
INNER HASH JOIN (
SELECT m.Id,AddrId,MgrObjTypeId,AgentBM,m.Name,a.Name AS AddrName,t.Name AS MgrObjTypeName
FROM dbo.mgrobj m
INNER JOIN dbo.addrnode a ON a.Id=m.AddrId
INNER JOIN dbo.mgrobjtype t ON m.MgrObjTypeId=t.Id
WHERE AddrId IN(‘02109000‘,……,‘02109002‘)
) AS b ON a.MgrObjId=b.Id AND a.AgentBM=b.AgentBm
) tmp
LEFT JOIN agentserver AS ag ON tmp.AgentBm = ag.AgentBm
LEFT JOIN eventdir AS e ON tmp.EventBm = e.Bm
LEFT JOIN loginUser AS l ON tmp.cfmoper = l.loginGuid
WHERE tmp.RowNo BETWEEN 190001 AND 190020
在大的分页的时候,通过hash查询,不必扫描前面的页数,可以大大减少IO,但是,由于hash join
是强制性的,所以使用的时候要注意,我这里应该是个特例。
查询分析器的提示:“警告: 由于使用了本地联接提示,联接次序得以强制实施。”
我们来看看对应情况下的IO:
表 ‘eventlog‘。扫描计数 5,逻辑读取 5609 次,物理读取 34 次,预读 5636 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘Worktable‘。扫描计数 3,逻辑读取 375 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘Worktable‘。扫描计数 0,逻辑读取 0 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘mgrobj‘。扫描计数 5,逻辑读取 24 次,物理读取 8 次,预读 40 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘mgrobjtype‘。扫描计数 1,逻辑读取 6 次,物理读取 1 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘addrnode‘。扫描计数 3,逻辑读取 18 次,物理读取 6 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘loginuser‘。扫描计数 1,逻辑读取 60 次,物理读取 2 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘eventdir‘。扫描计数 1,逻辑读取 40 次,物理读取 0 次,预读 0 次,lob 逻辑读取 30 次,lob 物理读取 0 次,lob 预读 0 次。
表 ‘agentserver‘。扫描计数 1,逻辑读取 1540 次,物理读取 1 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
这次的IO表现非常的好,没有因为查询后面的页数增大而导致较大的IO,查询时间从没有使用hash join
的50秒提升为只需12秒,查询时间的开销应该耗费了在hash
查找上了。
再看看对应的查询计划,这个时候,主要是因为排序的开销较大。
我们再看看他的预估的和执行的区别,为什么会让排序占如此大的开销?
很明显,预估的时候只需对刷选的结果排序,但是实际执行是对前面所有的页数进行了排序,最终排序占了大部分的开销。那么,这种情况能破吗?请留下您的回复!
其他优化参考
在另外的群上讨论时,发现使用ROW_NUMBER
分页查询到后面的页数会越来越慢的这个问题的确困扰了不少的人。
有的人提出,谁会这么无聊,把页数翻到几千页以后?一开始我也是这么想的,但是跟其他人交流之后,发现确实有这么一种场景,我们的软件提供了最后一页这个功能,结果……当然,一种方法就是在设计软件的时候,就去掉这个最后一页的功能;另外一种思路,就是查询页数过半之后,就反向查询,那么查询最后一页其实也就是查询第一页。
还有一些人提出,把查询出来的内容,放到一个临时表,这个临时表中的加入自增Id的索引,这样,可以通过辨别Id来进行快速刷选记录。这也是一种方法,我打算稍后尝试。但是这种方法也是存在问题的,就是无法做到通用,必须根据每个表进行临时表的构建,另外,在超大数据查询时,插入的记录过多,因为索引的存在也是会慢的,而且每次都这么做,估计CPU也挺吃紧。但是不管怎么样,这是一种思路。
你有什么好的建议?不妨把你的想法在评论中提出来,一起讨论讨论。
总结
现在,我们来总结下在这次优化过程中学习到什么内容:
- 在SQLServer中,
ROW_NUMBER
的分页应该是最高效的了,而且兼容SQLServer2005以后的数据库 - 通过“欺骗”查询引擎的小技巧,可以控制查询引擎部分的优化过程
-
ROW_NUMBER
分页在大页数时存在性能问题,可以通过一些小技巧进行规避- 尽量通过cte利用索引
- 把不参与
where
条件的表放到分页的cte外面 - 如果参与
where
条件的表过多,可以考虑把不参与分页的表先做一个临时表,减少IO - 在较大页数的时候强制使用
hash join
可以减少io,从而获得很好的性能
-
使用
with(forceseek)
可以强制查询因此进行索引查询
最后,感谢SQLServer群的高桑、宋桑、肖桑和其他群友的大力帮助,这个杜绝吹水的群非常的棒,让我这个程序猿学到了很多数据库的知识!
注:经网友提示,2015-01-07 09:15做以下更新:
参考文章
如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮,您的“推荐”将是我最大的写作动力! 如果您想持续关注我的文章,请扫描二维码,关注马非码的微信公众号,我会将我的文章推送给您,并和您一起分享我日常阅读过的优质文章。
本文版权归作者和博客园共有,来源网址:http://www.cnblogs.com/marvin/ 欢迎各位转载,但是未经作者本人同意,转载文章之后必须在文章页面明显位置给出作者和原文连接,否则保留追究法律责任的权利。
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。