c2java 第3篇 红黑树删除的理解和jdb调试初步
红黑树节点的删除,值替换后不改变红黑属性,归结为删除最多有一个孩子的节点,对应到2-3-4树叶节点的:
1. 4-节点
2. 3-节点
3. 2-节点
a.兄节点至少是3-节点: 两次转移.
b.弟节点是2-节点:一次转移,一次融合.
c.父节点是2-节点:cascading
2-3-4树的删除太复杂,估计没人用在实践中;并且还有个缺点:
真正该删除的保留,而其他节点被删除,如果仍然被程序其他部分持有,就悲剧了。
因此算法导论第三版做了更改,许多其他书籍引用还是第2版的做法。
删除后的调整
/* | B / A D / \ / a b C E / \ / c d e f */
0. 只涉及到A到E五个节点,周围节点a-f不变。
1. 最终目的状态是经过A的黑高度加一,其他节点高度不变。
2. 初始状态是经过A的黑高度少了一。
3. 初始树的形态有多种:
(A,D) = (b,r)
(A,D,Dl,Dr) = (b,b,b,b)
(A,D,Dl,Dr) = (b,b,r,b)
(A,D,Dl,Dr) = (b,b,*,r)
其中Dl,Dr分别是D的左右儿子,*表示颜色任意;
Q: 插入一个元素后马上删除之,树的形态会不会变?
A: 见下面的输出,只差一个局部的旋转而已。
图片来源: http://blog.chinaunix.net/uid-26575352-id-3061918.html
语言注记
====
L1 如果我们想这样定义类:
Struct Node{
int val;
Struct Node *child[2];
};可以简化fixup()代码,但是java不支持,只能这样:Node.java
class Node{
int val;
Node[] child = {null, null};
public Node(int _val, Node l, Node r){
val = _val;
child[0] = l; child[1] = r;
}
public static void main(String[] arg){
Node b = new Node(1, null, null),
c = new Node(2, null, null),
a = new Node(0, b, c);
System.out.printf("%d %d\n", a.child[0].val, a.child[1].val);
}
}
如果非要这样子,我们自然引出这样的问题:因为数组是在堆上分配的,java如何避免内存碎片化?
L2 我的jdb 不能stop in 行号,只能这样stop in RBTree.plant断点在函数开头,
如果函数很长则颇为不便,是不是jdk 1.5 for windows 的不支持呢?
附jdb #gdb 的对比
====
stop in RBTree.plant #break plant
clear #delete
cont #c
locals #info local
dump var #print *var
print val #print var
set val = x # print val = x
where #bactrace
up, down #frame n
next, step #next, step
threads/thread #info thread/ thread n
monitor cmd #?
catch, watch #?
trace #跟踪函数的进出
classes:列举当前已知的类。
suspend, resume:线程的suspend和resume,需要加线程号为参数。
methods, fileds:列举类的方法和成员变量。
树的输出,根据后序和中序可以重构二叉树。
附代码:
/*RBTree.java -- Red Black Tree todo: 把插入改成算法导论第3版的。 author: ludi 2014.04 */ class RBNode<T extends Comparable<T>> { RBNode<T> parent, left, right; int color; T nodeValue; RBNode(T item, RBNode<T> left, RBNode<T> right, RBNode<T> parent, int color) { nodeValue = item; this.left = left; this.right = right; this.parent = parent; this.color = color; } } public class RBTree<T extends Comparable<T>> { RBNode<T> root; RBNode<T> NIL = null; final static int BLACK = 0, RED = 1; public RBTree() {/*构造方法: 这样构造NIL使得它可以像其他节点那样参与旋转*/ if (NIL == null) NIL = new RBNode<T>(null, null, null, null, BLACK); root = NIL; } public void deleteTree(RBNode<T> t) {/*析构方法*/ if (t != NIL){ deleteTree(t.left); deleteTree(t.right); t = null; } } private void rotate (RBNode<T> pivot, int type) {/*type == 0: 左旋*/ RBNode<T> p = pivot.parent, g = pivot.parent.parent; if(0 == type){ p.right = pivot.left; pivot.left = p; pivot.parent = g; p.parent = pivot; if (p.right != NIL) p.right.parent = p; }else{ p.left = pivot.right; pivot.right = p; pivot.parent = g; p.parent = pivot; if (p.left != NIL) p.left.parent = p; } if (p == root) root = pivot; else if (p == g.right) g.right = pivot; else g.left = pivot; } private void delRotate (RBNode<T> x, int type) {/*type == 0: x左旋下沉*/ RBNode<T> y; if(0 == type){ y = x.right; x.right = y.left; if(y.left != NIL){y.left.parent = x;} y.left =x; }else{ y = x.left; x.left = y.right; if(y.right != NIL){y.right.parent = x;} y.right = x; } y.parent = x.parent; if(x.parent == NIL){root = y;} else if(x == x.parent.left){x.parent.left = y;} else x.parent.right = y; x.parent = y; } private void split4Node(RBNode<T> x) {/*提升4-节点并做必要的旋转*/ /*翻转颜色*/ x.color = RED; x.left.color = BLACK; x.right.color = BLACK; RBNode<T> p = x.parent; if (p.color == RED){/*如果父节点是红色则需要旋转*/ RBNode<T> g = x.parent.parent; g.color = RED; if ( p == g.left && x == p.right ){/*x是g的内部孙子*/ rotate(x, 0); x.color = BLACK; p = x; /*准备右旋*/ }else if ( p == g.right && x == p.left ){ rotate(x, 1); x.color = BLACK; p = x; }else{ p.color = BLACK; } rotate(p, p == g.left ? 1 : 0); } } public boolean add(T item) {/*插入*/ RBNode<T> curr = root, parent = NIL, newNode; while (curr != NIL){/*查找插入点*/ if (curr.nodeValue.equals(item)) return false; /*R1 沿路分裂4-节点*/ if (curr.left.color == RED && curr.right.color == RED) split4Node(curr); parent = curr; if (item.compareTo(curr.nodeValue) < 0) curr = curr.left; else curr = curr.right; } /*R2 新节点以红节点插入*/ newNode = new RBNode<T>(item, NIL, NIL, parent, RED); if (parent == NIL){ root = newNode; }else{ if (item.compareTo(parent.nodeValue) < 0) parent.left = newNode; else parent.right = newNode; /*R3 出现连续的红节点需要旋转*/ if (parent.color == RED) split4Node(newNode); } root.color = BLACK; /*R4 根节点是黑色的*/ return true; } private void plant(RBNode<T> u, RBNode<T> v) {/*把v放置在u位置*/ if(u.parent == NIL) root = v; else if(u == u.parent.left) u.parent.left = v; else u.parent.right = v; v.parent = u.parent; } private void fixup(RBNode<T> x) { RBNode<T> w; /*x的兄弟*/ while(x != root && x.color == BLACK){ if(x == x.parent.left){ w = x.parent.right; if(w.color == RED){ /*case1: w 是红的*/ w.color = BLACK; x.parent.color = RED; delRotate(x.parent, 0); /*颜色翻转和旋转*/ w = x.parent.right; /*指向原来w的左儿子,此时w必为黑*/ } if(w.left.color == BLACK && w.right.color == BLACK){ /*case2: w 是黑的,w的儿子都是黑的*/ w.color = RED; /*w和x都去掉一个黑*/ x = x.parent; /*为补偿,父亲节点加一个黑*/ }else{ if(w.right.color == BLACK){ /*case3:w 是黑的,w的左儿子是红的,w的右儿子是黑的*/ w.left.color = BLACK; w.color = RED; delRotate(w, 1); w = x.parent.right; } /*case4:w 是黑的,w的右儿子是红的*/ w.color = x.parent.color; x.parent.color = BLACK; w.right.color = BLACK; delRotate(x.parent, 0); /*终于去掉了x的附加黑*/ x = root; /*设置终止条件*/ } }else{/*symmetry*/ w = x.parent.left; if(w.color == RED){ w.color = BLACK; x.parent.color = RED; delRotate(x.parent, 1); w = x.parent.left; } if(w.left.color == BLACK && w.right.color == BLACK){ w.color = RED; x = x.parent; }else{ if(w.left.color == BLACK){ w.right.color = BLACK; w.color = RED; delRotate(w, 0); w = x.parent.left; } w.color = x.parent.color; x.parent.color = BLACK; w.left.color = BLACK; delRotate(x.parent, 1); x = root; } } } x.color = BLACK; } void removeNode(RBNode<T> z) {/*删除z*/ RBNode<T> y = z, x; int yoc = y.color; /*标准二叉树删除:用z的后继y替换z*/ if(z.left == NIL){ x = z.right; plant(z, z.right); }else if(z.right == NIL){ x = z.left; plant(z, z.left); }else{ y = minimum(z.right); yoc = y.color; x = y.right; if(y.parent == z) x.parent = y; else{ plant(y, y.right); y.right = z.right; y.right.parent = y; } plant(z, y); y.left = z.left; y.left.parent = y; y.color = z.color; } /*红黑属性的维护: y是红节点则什么都不用做。*/ if(BLACK == yoc) fixup(x); } RBNode<T> find(RBNode<T> t, T val){ /*以t为根,查找值为val的节点*/ while(t != NIL){ if(t.nodeValue == val)break; else if(val.compareTo(t.nodeValue) < 0) t = t.left; else t = t.right; } return t; } public RBNode<T> remove(T val){ /*删除并返回值为val的节点,如果值不存在返回null*/ RBNode<T> t = find(root, val); if(t == NIL)return null; removeNode(t); return t; } public RBNode<T> minimum(RBNode<T> t) {/*以t为根节点的最小节点是其最左节点*/ while(t.left != NIL){ t = t.left; } return t; } /*下面是非核心方法,仅用来练习二叉树*/ void visitInOrder(RBNode<T> t){ if(t == NIL)return; visitInOrder(t.left); System.out.print(t.nodeValue + " "); visitInOrder(t.right); } int height(RBNode<T> t){ int hl, hr; if(t == NIL)return -1; hl = height(t.left); hr = height(t.right); hl = 1 + (hl > hr ? hl : hr); System.out.print(t.nodeValue + ":" + hl + " "); return hl; } void print(){ System.out.println("tree height: "); height(root); System.out.println(); System.out.println("visitInOrder:"); visitInOrder(root); System.out.println(); } } class Test{ public static void main(String[] arg){ RBTree<Integer> tree = new RBTree<Integer>(); //int[] arr = {40, 20, 10, 35, 50, 25, 30}; int[] arr = {2,15,12,4,8,10,25,35,55,11}; for(int i = 0; i < arr.length; ++i){ tree.add(arr[i]); System.out.print("after insert " + arr[i] + ", "); tree.print(); } for(int i = arr.length-1; i >= 0; --i) { tree.remove(arr[i]); System.out.print("after delete " + arr[i] + ", "); tree.print(); } tree.deleteTree(tree.root); tree = null; } }
/*
$ javac -encoding UTF-8 -g RBTree.java && java Test > xx.txt
ludi@msys ~/java
$ cat xx.txt
after insert 2, tree height:
2:0
visitInOrder:
2
after insert 15, tree height:
15:0 2:1
visitInOrder:
2 15
after insert 12, tree height:
2:0 15:0 12:1
visitInOrder:
2 12 15
after insert 4, tree height:
4:0 2:1 15:0 12:2
visitInOrder:
2 4 12 15
after insert 8, tree height:
2:0 8:0 4:1 15:0 12:2
visitInOrder:
2 4 8 12 15
after insert 10, tree height:
2:0 10:0 8:1 4:2 15:0 12:3
visitInOrder:
2 4 8 10 12 15
after insert 25, tree height:
2:0 10:0 8:1 4:2 25:0 15:1 12:3
visitInOrder:
2 4 8 10 12 15 25
after insert 35, tree height:
2:0 10:0 8:1 4:2 15:0 35:0 25:1 12:3
visitInOrder:
2 4 8 10 12 15 25 35
after insert 55, tree height:
2:0 10:0 8:1 4:2 15:0 55:0 35:1 25:2 12:3
visitInOrder:
2 4 8 10 12 15 25 35 55
after insert 11, tree height:
2:0 8:0 11:0 10:1 4:2 15:0 55:0 35:1 25:2 12:3
visitInOrder:
2 4 8 10 11 12 15 25 35 55
after delete 11, tree height:
2:0 8:0 10:1 4:2 15:0 55:0 35:1 25:2 12:3
visitInOrder:
2 4 8 10 12 15 25 35 55
after delete 55, tree height:
2:0 8:0 10:1 4:2 15:0 35:0 25:1 12:3
visitInOrder:
2 4 8 10 12 15 25 35
after delete 35, tree height:
2:0 8:0 10:1 4:2 15:0 25:1 12:3
visitInOrder:
2 4 8 10 12 15 25
after delete 25, tree height:
2:0 8:0 10:1 4:2 15:0 12:3
visitInOrder:
2 4 8 10 12 15
after delete 10, tree height:
2:0 8:0 4:1 15:0 12:2
visitInOrder:
2 4 8 12 15
after delete 8, tree height:
2:0 4:1 15:0 12:2
visitInOrder:
2 4 12 15
after delete 4, tree height:
2:0 15:0 12:1
visitInOrder:
2 12 15
after delete 12, tree height:
2:0 15:1
visitInOrder:
2 15
after delete 15, tree height:
2:0
visitInOrder:
2
after delete 2, tree height:
visitInOrder:
ludi@msys ~/java
$
*/
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。