mysql数据库优化 pt-query-digest使用
一、pt-query-digest工具简介
pt-query-digest是用于分析mysql慢查询的一个工具,它可以分析binlog、General log、slowlog , 也可以通过show processlist或者通过tcpdump抓去的mysql协议数据来进行分析。可以把分析结果输出到文件中,分析过程是先对查询语句的条件进行参数化,然后对参数化以后的查询进行分组统计,统计出各查询的执行时间、次数、占比等,可以借助分析结果找出问题进行优化。
二、pt-query-digest的语法
pt-query-digest [OPTIONS] [FILES] [DSN]
--create-review-table 当使用--review参数把分析结果输出到表中时,如果没有表就自动创建。
--create-history-table 当使用--history参数把分析结果输出到表中时,如果没有表就自动创建。
--filter 对输入的慢查询按指定的字符串进行匹配过滤后再进行分析
--limit限制输出结果百分比或数量,默认值是20,即将最慢的20条语句输出,如果是50%则按总响应时间占比从大到小排序,输出到总和达到50%位置截止。
--host mysql服务器地址
--user mysql用户名
--password mysql用户密码
--history 将分析结果保存到表中,分析结果比较详细,下次再使用--history时,如果存在相同的语句,且查询所在的时间区间和历史表中的不同,则会记录到数据表中,可以通过查询同一CHECKSUM来比较某类型查询的历史变化。
--review 将分析结果保存到表中,这个分析只是对查询条件进行参数化,一个类型的查询一条记录,比较简单。当下次使用--review时,如果存在相同的语句分析,就不会记录到数据表中。
--output 分析结果输出类型,值可以是report(标准分析报告)、slowlog(Mysql
slow log)、json、json-anon,一般使用report,以便于阅读。
--since 从什么时间开始分析,值为字符串,可以是指定的某个”yyyy-mm-dd [hh:mm:ss]”格式的时间点,也可以是简单的一个时间值:s(秒)、h(小时)、m(分钟)、d(天),如12h就表示从12小时前开始统计。
--until 截止时间,配合—since可以分析一段时间内的慢查询。
# cd percona-toolkit-2.2.4
# perl Makefile.PL
# make && make test && make install
四、分析慢查询日志
既然是分析慢日志,当然需要开启慢日志查询,并且配置数据库的相关配置,编辑my.cnf
在mysqld下设置如下
long_query_time = 1
slow_query_log = on
slow_query_log_file = /usr/local/mysql/var/mysql-slow.log
然后重启服务,即可产生慢日志
使用pt-query-digest最简单的方式pt-query-digest mysql-slow.log
总体统计结果如下
Overall: 总共有多少条查询,上例为总共1690个查询。 Time range: 查询执行的时间范围。 unique: 唯一查询数量,即对查询条件进行参数化以后,总共有多少个不同的查询,该例为28。 total: 总计 min:最小 max: 最大 avg:平均 95%: 把所有值从小到大排列,位置位于95%的那个数,这个数一般最具有参考价值。 median: 中位数,把所有值从小到大排列,位置位于中间那个数。
查询分组统计结果
由上图可见,这部分对查询进行参数化并分组,然后对各类查询的执行情况进行分析,结果按总执行时长,从大到小排序。 Response: 总的响应时间。 time: 该查询在本次分析中总的时间占比。 calls: 执行次数,即本次分析总共有多少条这种类型的查询语句。 R/Call: 平均每次执行的响应时间。 Item : 查询对象
每部分详细统计结果
1号查询的详细统计结果,最上面的表格列出了执行次数、最大、最小、平均、95%等各项目的统计。 Databases: 库名 Users: 各个用户执行的次数(占比) Query_time distribution : 查询时间分布, 长短体现区间占比,本例中查询集中在10ms。 Tables: 查询中涉及到的表 Explain: 示例
用法示例
(1)直接分析慢查询文件:pt-query-digest mysql-slow.log
(2)分析最近12小时内的查询:
pt-query-digest --filter ‘$event->{fingerprint} =~m/^select/i‘ slow.log> slow_report4.log
(5) 针对某个用户的慢查询
pt-query-digest --filter ‘($event->{user} || "" =~m/^root/i‘ slow.log> slow_report5.log
(6) 查询所有的全表扫描或fulljoin的慢查询
pt-query-digest --filter ‘(($event->{Full_scan} ||"" eq "yes" ||(($event->{Full_join} || ""eq "yes"‘ slow.log> slow_report6.log
(7)把查询保存到query_review表
pt-query-digest --user=root --password=xxxxxx --review h=127.0.0.1,D=test,t=query_review --create-review-table slow.log
pt-query-digest --user=root --password=xxxxxx --review h=127.0.0.1,D=test,t=query_ history --create-review-table slow.log_20141107
(9)通过tcpdump抓取mysql的tcp协议数据,然后再分析
tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 >mysql.tcp.txt
pt-query-digest --type tcpdump mysql.tcp.txt> slow_report9.log
(10)分析binlog
mysqlbinlog mysql-bin.000093 > mysql-bin000093.sql
pt-query-digest --type=binlog mysql-bin000093.sql >slow_report10.log
(11)分析generallog
pt-query-digest --type=genlog localhost.log >slow_report11.log
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。