linux源码Makefile详解(完整)
转自:http://www.cnblogs.com/Daniel-G/p/3286614.html
随着 Linux 操作系统的广泛应用,特别是 Linux 在嵌入式领域的发展,越来越多的人开始投身到 Linux 内核级的开发中。面对日益庞大的 Linux 内核源代码,开发者在完成自己的内核代码后,都将面临着同样的问题,即如何将源代码融入到 Linux 内核中,增加相应的 Linux 配置选项,并最终被编译进 Linux 内核。这就需要了解 Linux 的内核配置系统。
- Makefile:分布在 Linux 内核源代码中的 Makefile,定义 Linux 内核的编译规则;
- 配置文件(config.in):给用户提供配置选择的功能;
- 配置工具:包括配置命令解释器(对配置脚本中使用的配置命令进行解释)和配置用户界面(提供基于字符界面、基于 Ncurses 图形界面以及基于 Xwindows 图形界面的用户配置界面,各自对应于 Make config、Make menuconfig 和 make xconfig)。
- Makefile:顶层 Makefile,是整个内核配置、编译的总体控制文件。
- .config:内核配置文件,包含由用户选择的配置选项,用来存放内核配置后的结果(如 make config)。
- arch/*/Makefile:位于各种 CPU 体系目录下的 Makefile,如 arch/arm/Makefile,是针对特定平台的 Makefile。
- 各个子目录下的 Makefile:比如 drivers/Makefile,负责所在子目录下源代码的管理。
- Rules.make:规则文件,被所有的 Makefile 使用。
%.s: %.c $(CC) $(CFLAGS) -S $< -o $@
%.s: %.c $(CC) $(CFLAGS) $(EXTRA_CFLAGS) $(CFLAGS_$(*F)) $(CFLAGS_$@) -S $< -o $@
版本信息有:VERSION,PATCHLEVEL, SUBLEVEL, EXTRAVERSION,KERNELRELEASE。版本信息定义了当前内核的版本,比如 VERSION=2,PATCHLEVEL=4,SUBLEVEL=18,EXATAVERSION=-rmk7,它们共同构成内核的发行版本KERNELRELEASE:2.4.18-rmk7
在顶层 Makefile 的开头,用 ARCH 定义目标 CPU 的体系结构,比如 ARCH:=arm 等。许多子目录的 Makefile 中,要根据 ARCH 的定义选择编译源文件的列表。
TOPDIR 定义了 Linux 内核源代码所在的根目录。例如,各个子目录下的 Makefile 通过 $(TOPDIR)/Rules.make 就可以找到 Rules.make 的位置。
SUBDIRS 定义了一个目录列表,在编译内核或模块时,顶层 Makefile 就是根据 SUBDIRS 来决定进入哪些子目录。SUBDIRS 的值取决于内核的配置,在顶层 Makefile 中 SUBDIRS 赋值为 kernel drivers mm fs net ipc lib;根据内核的配置情况,在 arch/*/Makefile 中扩充了 SUBDIRS 的值,参见4)中的例子。
Linux 内核文件 vmlinux 是由以下规则产生的:
vmlinux: $(CONFIGURATION) init/main.o init/version.o linuxsubdirs $(LD) $(LINKFLAGS) $(HEAD) init/main.o init/version.o --start-group $(CORE_FILES) $(DRIVERS) $(NETWORKS) $(LIBS) --end-group -o vmlinux |
HEAD := arch/arm/kernel/head-$(PROCESSOR).o arch/arm/kernel/init_task.o |
# arch/arm/Makefile # If we have a machine-specific directory, then include it in the build. MACHDIR := arch/arm/mach-$(MACHINE) ifeq ($(MACHDIR),$(wildcard $(MACHDIR))) SUBDIRS += $(MACHDIR) CORE_FILES := $(MACHDIR)/$(MACHINE).o $(CORE_FILES) endif HEAD := arch/arm/kernel/head-$(PROCESSOR).o arch/arm/kernel/init_task.o SUBDIRS += arch/arm/kernel arch/arm/mm arch/arm/lib arch/arm/nwfpe CORE_FILES := arch/arm/kernel/kernel.o arch/arm/mm/mm.o $(CORE_FILES) LIBS := arch/arm/lib/lib.a $(LIBS) |
在 Rules.make 中定义的是编译的通用规则,具体到特定的场合,需要明确给出编译环境,编译环境就是在以上的变量中定义的。针对交叉编译的要求,定义了 CROSS_COMPILE。比如:
CROSS_COMPILE = arm-linux- CC = $(CROSS_COMPILE)gcc LD = $(CROSS_COMPILE)ld ...... |
CFLAGS 定义了传递给 C 编译器的参数。
LINKFLAGS 是链接生成 vmlinux 时,由链接器使用的参数。LINKFLAGS 在 arm/*/Makefile 中定义,比如:
# arch/arm/Makefile LINKFLAGS :=-p -X -T arch/arm/vmlinux.lds |
.config 文件中有许多的配置变量等式,用来说明用户配置的结果。例如 CONFIG_MODULES=y 表明用户选择了 Linux 内核的模块功能。
.config 被顶层 Makefile 包含后,就形成许多的配置变量,每个配置变量具有确定的值:y 表示本编译选项对应的内核代码被静态编译进 Linux 内核;m 表示本编译选项对应的内核代码被编译成模块;n 表示不选择此编译选项;如果根本就没有选择,那么配置变量的值为空。
# # Makefile for the linux kernel. # # All of the (potential) objects that export symbols. # This list comes from ‘grep -l EXPORT_SYMBOL *.[hc]‘. export-objs := tc.o # Object file lists. obj-y := obj-m := obj-n := obj- := obj-$(CONFIG_TC) += tc.o obj-$(CONFIG_ZS) += zs.o obj-$(CONFIG_VT) += lk201.o lk201-map.o lk201-remap.o # Files that are both resident and modular: remove from modular. obj-m := $(filter-out $(obj-y), $(obj-m)) # Translate to Rules.make lists. L_TARGET := tc.a L_OBJS := $(sort $(filter-out $(export-objs), $(obj-y))) LX_OBJS := $(sort $(filter $(export-objs), $(obj-y))) M_OBJS := $(sort $(filter-out $(export-objs), $(obj-m))) MX_OBJS := $(sort $(filter $(export-objs), $(obj-m))) include $(TOPDIR)/Rules.make |
对 Makefile 的说明和解释,由#开始。
类似于 obj-$(CONFIG_TC) += tc.o 的语句是用来定义编译的目标,是子目录 Makefile 中最重要的部分。编译目标定义那些在本子目录下,需要编译到 Linux 内核中的目标文件列表。为了只在用户选择了此功能后才编译,所有的目标定义都融合了对配置变量的判断。
前面说过,每个配置变量取值范围是:y,n,m 和空,obj-$(CONFIG_TC) 分别对应着 obj-y,obj-n,obj-m,obj-。如果 CONFIG_TC 配置为 y,那么 tc.o 就进入了 obj-y 列表。obj-y 为包含到 Linux 内核 vmlinux 中的目标文件列表;obj-m 为编译成模块的目标文件列表;obj-n 和 obj- 中的文件列表被忽略。配置系统就根据这些列表的属性进行编译和链接。
export-objs 中的目标文件都使用了 EXPORT_SYMBOL() 定义了公共的符号,以便可装载模块使用。在 tc.c 文件的最后部分,有 "EXPORT_SYMBOL(search_tc_card);",表明 tc.o 有符号输出。
这里需要指出的是,对于编译目标的定义,存在着两种格式,分别是老式定义和新式定义。老式定义就是前面 Rules.make 使用的那些变量,新式定义就是 obj-y,obj-m,obj-n 和 obj-。Linux 内核推荐使用新式定义,不过由于 Rules.make 不理解新式定义,需要在 Makefile 中的适配段将其转换成老式定义。
适配段的作用是将新式定义转换成老式定义。在上面的例子中,适配段就是将 obj-y 和 obj-m 转换成 Rules.make 能够理解的 L_TARGET,L_OBJS,LX_OBJS,M_OBJS,MX_OBJS。
L_OBJS := $(sort $(filter-out $(export-objs), $(obj-y))) 定义了 L_OBJS 的生成方式:在 obj-y 的列表中过滤掉 export-objs(tc.o),然后排序并去除重复的文件名。这里使用到了 GNU Make 的一些特殊功能,具体的含义可参考 Make 的文档(info make)。
在 Linux 内核中,配置命令有多种方式:
配置命令 | 解释脚本 |
Make config, make oldconfig | scripts/Configure |
Make menuconfig | scripts/Menuconfig |
Make xconfig | scripts/tkparse |
mainmenu_name /prompt/ /prompt/ 是用‘或"包围的字符串,‘与"的区别是‘…‘中可使用$引用变量的值。mainmenu_name 设置最高层菜单的名字,它只在 make xconfig 时才会显示。
bool /prompt/ /symbol/ hex /prompt/ /symbol/ /word/ int /prompt/ /symbol/ /word/ string /prompt/ /symbol/ /word/ tristate /prompt/ /symbol/ |
define_bool /symbol/ /word/ define_hex /symbol/ /word/ define_int /symbol/ /word/ define_string /symbol/ /word/ define_tristate /symbol/ /word/ |
dep_bool /prompt/ /symbol/ /dep/ ... dep_mbool /prompt/ /symbol/ /dep/ ... dep_hex /prompt/ /symbol/ /word/ /dep/ ... dep_int /prompt/ /symbol/ /word/ /dep/ ... dep_string /prompt/ /symbol/ /word/ /dep/ ... dep_tristate /prompt/ /symbol/ /dep/ ... |
不同依赖语句的区别在于它们由依赖条件所产生的取值范围不同。
choice /prompt/ /word/ /word/ |
choice 语句首先给出一串选择列表,供用户选择其中一种。比如 Linux for ARM 支持多种基于 ARM core 的 CPU,Linux 使用 choice 语句提供一个 CPU 列表,供用户选择:
choice ‘ARM system type‘ "Anakin CONFIG_ARCH_ANAKIN Archimedes/A5000 CONFIG_ARCH_ARCA5K Cirrus-CL-PS7500FE CONFIG_ARCH_CLPS7500 …… SA1100-based CONFIG_ARCH_SA1100 Shark CONFIG_ARCH_SHARK" RiscPC |
if [ /expr/ ] ; then /statement/ ... fi if [ /expr/ ] ; then /statement/ ... else /statement/ ... fi |
mainmenu_option next_comment comment ‘…..‘ … endmenu |
source /word/
/word/ 是文件名,source 的作用是调入新的文件。
- 备份 .config 文件
- cp arch/arm/deconfig .config
- 修改 .config
- cp .config arch/arm/deconfig
- 恢复 .config
<description> <variable name> <help file> |
$cd drivers/test $tree . |-- Config.in |-- Makefile |-- cpu | |-- Makefile | `-- cpu.c |-- test.c |-- test_client.c |-- test_ioctl.c |-- test_proc.c |-- test_queue.c `-- test |-- Makefile `-- test.c |
# # TEST driver configuration # mainmenu_option next_comment comment ‘TEST Driver‘ bool ‘TEST support‘ CONFIG_TEST if [ "$CONFIG_TEST" = "y" ]; then tristate ‘TEST user-space interface‘ CONFIG_TEST_USER bool ‘TEST CPU ‘ CONFIG_TEST_CPU fi endmenu |
在文件的最后加入:source drivers/test/Config.in,将 TEST Driver 子功能的配置纳入到 Linux 内核的配置中。
# drivers/test/Makefile # # Makefile for the TEST. # SUB_DIRS := MOD_SUB_DIRS := $(SUB_DIRS) ALL_SUB_DIRS := $(SUB_DIRS) cpu L_TARGET := test.a export-objs := test.o test_client.o obj-$(CONFIG_TEST) += test.o test_queue.o test_client.o obj-$(CONFIG_TEST_USER) += test_ioctl.o obj-$(CONFIG_PROC_FS) += test_proc.o subdir-$(CONFIG_TEST_CPU) += cpu include $(TOPDIR)/Rules.make clean: for dir in $(ALL_SUB_DIRS); do make -C $$dir clean; done rm -f *.[oa] .*.flags |
# drivers/test/test/Makefile # # Makefile for the TEST CPU # SUB_DIRS := MOD_SUB_DIRS := $(SUB_DIRS) ALL_SUB_DIRS := $(SUB_DIRS) L_TARGET := test_cpu.a obj-$(CONFIG_test_CPU) += cpu.o include $(TOPDIR)/Rules.make clean: rm -f *.[oa] .*.flags |
…… subdir-$(CONFIG_TEST) += test …… include $(TOPDIR)/Rules.make |
…… DRIVERS-$(CONFIG_PLD) += drivers/pld/pld.o DRIVERS-$(CONFIG_TEST) += drivers/test/test.a DRIVERS-$(CONFIG_TEST_CPU) += drivers/test/cpu/test_cpu.a DRIVERS := $(DRIVERS-y) …… |
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。