《linux 内核完全剖析》 fork.c 代码分析笔记
fork.c 代码分析笔记
verifiy_area
long last_pid=0; //全局变量,用来记录目前最大的pid数值 void verify_area(void * addr,int size) // addr 是虚拟地址 ,size是需要写入的字节大小 { unsigned long start; start = (unsigned long) addr; //把地址强制类型转换之后,赋值给start size += start & 0xfff; //取addr在当前虚拟地址中4M页面的偏移值,加上size可以得到要求写入虚拟地址的末端 start &= 0xfffff000; //取addr所在虚拟地址页面的起始处,即该页在数据段中偏移量 start += get_base(current->ldt[2]); //get_base得到当前进程数据段的线性基地址,加上start偏移量,于是实现了虚拟地址转化到线性地址 while (size>0) { size -= 4096; write_verify(start);//对线性地址start进行操作,验证该地址处页面是否可写 start += 4096; } }
copy_mem
int copy_mem(int nr,struct task_struct * p) //复制内存页表,把进程p的数据段copy到nr*TASK的线性地址处 { unsigned long old_data_base,new_data_base,data_limit; unsigned long old_code_base,new_code_base,code_limit; code_limit=get_limit(0x0f);//0x0f任务代码段选择符 ,get_limit 得到代码段的段限长 data_limit=get_limit(0x17);//0x17任务数据段选择符,get_limit 得到数据段的段限长 old_code_base = get_base(current->ldt[1]); //得到代码段的基地址 old_data_base = get_base(current->ldt[2]); //得到数据段的基地址 if (old_data_base != old_code_base) //linux 0.12 是 I&D的模式 panic("We don‘t support separate I&D"); if (data_limit < code_limit) //要求数据段不小于代码段 panic("Bad data_limit"); new_data_base = new_code_base = nr * TASK_SIZE; //更新代码段的基地址 p->start_code = new_code_base; //更新当前进程代码段的基地址 set_base(p->ldt[1],new_code_base);//把new_code_base 写入到ldt[1] set_base(p->ldt[2],new_data_base); if (copy_page_tables(old_data_base,new_data_base,data_limit)) { //把old_date_base 线性地址的数据复制到new_data_base处 //copy_page_tables 成功返回0,错误返回-1.如果失败。就以页为单位,free掉new_date_base涉及的内存页 free_page_tables(new_data_base,data_limit); return -ENOMEM; } return 0; }
copy_process
/* * Ok, this is the main fork-routine. It copies the system process * information (task[nr]) and sets up the necessary registers. It * also copies the data segment in it‘s entirety. */ int copy_process(int nr,long ebp,long edi,long esi,long gs,long none, long ebx,long ecx,long edx, long orig_eax, long fs,long es,long ds, long eip,long cs,long eflags,long esp,long ss) { struct task_struct *p; int i; struct file *f; p = (struct task_struct *) get_free_page(); //申请一页空内存,由p指向它 if (!p) return -EAGAIN; task[nr] = p; //把新进程指针copy到task数组里面 *p = *current; /* NOTE! this doesn‘t copy the supervisor stack */ p->state = TASK_UNINTERRUPTIBLE;//copy进程的时候,p进程状态设置为TASK_UNINTERRIPTIBLE p->pid = last_pid; p->counter = p->priority; //运行时间数 p->signal = 0; //初始没有接受任何信号,信号图为空 p->alarm = 0; p->leader = 0; //fork出的进程不继承session leader,保证session leader只有一个 /* process leadership doesn‘t inherit */ p->utime = p->stime = 0; //用户态时间和内核态时间 p->cutime = p->cstime = 0;//子进程用户态时间和内核态时间 p->start_time = jiffies; //进程p开始时间 p->tss.back_link = 0;//修改任务状态TSS数据 p->tss.esp0 = PAGE_SIZE + (long) p; //任务内核态的栈指针 p->tss.ss0 = 0x10; p->tss.eip = eip; //指令代码指针 p->tss.eflags = eflags; p->tss.eax = 0; p->tss.ecx = ecx; p->tss.edx = edx; p->tss.ebx = ebx; p->tss.esp = esp; p->tss.ebp = ebp; p->tss.esi = esi; p->tss.edi = edi; p->tss.es = es & 0xffff; p->tss.cs = cs & 0xffff; p->tss.ss = ss & 0xffff; p->tss.ds = ds & 0xffff; p->tss.fs = fs & 0xffff; p->tss.gs = gs & 0xffff; p->tss.ldt = _LDT(nr); //_LDT宏计算出nr进程的LDT描述符的选择符 p->tss.trace_bitmap = 0x80000000; if (last_task_used_math == current) __asm__("clts ; fnsave %0 ; frstor %0"::"m" (p->tss.i387)); if (copy_mem(nr,p)) { //把 进程p的内容copy到nr*TASK的线性地址处 task[nr] = NULL; //失败就把task数组的对应指针置为NULL说明进程创建失败 free_page((long) p); //善后,把p相关的内存页释放 return -EAGAIN; } for (i=0; i<NR_OPEN;i++) //如果以上copy_mem成功,则把parent 打开的文件也让child继承 if (f=p->filp[i]) f->f_count++; if (current->pwd)//引用+1 current->pwd->i_count++; if (current->root) current->root->i_count++; if (current->executable) current->executable->i_count++; if (current->library) current->library->i_count++; set_tss_desc(gdt+(nr<<1)+FIRST_TSS_ENTRY,&(p->tss)); set_ldt_desc(gdt+(nr<<1)+FIRST_LDT_ENTRY,&(p->ldt)); p->p_pptr = current; p->p_cptr = 0; p->p_ysptr = 0; p->p_osptr = current->p_cptr; if (p->p_osptr) p->p_osptr->p_ysptr = p; current->p_cptr = p; p->state = TASK_RUNNING; /* do this last, just in case */ return last_pid; }
find_empty_process
int find_empty_process(void) //为新进程获取不重复的pid { int i; repeat: if ((++last_pid)<0) last_pid=1; for(i=0 ; i<NR_TASKS ; i++) if (task[i] && ((task[i]->pid == last_pid) || (task[i]->pgrp == last_pid))) //如果last_pid存在,那么repeat再测试 ++last_pid goto repeat; //在已经把lastpid变成所有进程都不同的pid之后,下面继续 for(i=1 ; i<NR_TASKS ; i++) //找出一个空闲进程,返回它的索引 i if (!task[i]) return i; return -EAGAIN; //如果64个进程都存在,那么报错 }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。