归并排序详细解析
我们先来一个两个有序的数组a和b进行排序的代码,两个有序的数组进行排序只需每次选择两个数组中最小的那个数放进c中就ok了,之后如果那个数组还有剩余就将其直接接在c后面。时间效率还是很快的达到了O(n)。
python源码
def MemeryArray(a,b,c): i = 0 j = 0 k = 0 n = len(a) m = len(b) while i<n and j<m: if a[i]<b[j]: c.append(a[i]) k = k + 1 i = i + 1 else: c.append(b[j]) k = k + 1 j = j + 1 while i<n: c.append(a[i]) k = k + 1 i = i + 1 while j<m: c.append(b[j]) k = k + 1 j = j + 1 print c #测试memery函数数据 a = [1,3,5,7,12,19] b = [2,5,6,8,9,10] c = list() MemeryArray(a,b,c)
void MemeryArray(int a[], int n, int b[], int m, int c[]) { int i, j, k; i = j = k = 0; while (i < n && j < m) { if (a[i] < b[j]) c[k++] = a[i++]; else c[k++] = b[j++]; } while (i < n) c[k++] = a[i++]; while (j < m) c[k++] = b[j++]; }
python源码
def mergearray(a,first,mid,last): temp = [] i = first j = mid + 1 m = mid n = last k = 0 while i<=m and j<=n: if a[i] <= a[j]: temp.append(a[i]) k = k + 1 i = i + 1 else: temp.append(a[j]) k = k + 1 j = j + 1 while i<=m: temp.append(a[i]) k = k + 1 i = i + 1 while i<=m: temp.append(a[j]) k = k + 1 j = j + 1 for i in range(0,k): a[first + i] = temp[i] def mergesort(a,first,last): if first<last: mid = (first+last)/2 mergesort(a,first,mid) mergesort(a,mid+1,last) mergearray(a,first,mid,last) def MergeSort(a): mergesort(a,0,len(a)-1) print a a = [5,1,3,6,19,10,12,4,7] MergeSort(a)
void mergearray(int a[], int first, int mid, int last, int temp[]) { int i = first, j = mid + 1; int m = mid, n = last; int k = 0; while (i <= m && j <= n) { if (a[i] <= a[j]) temp[k++] = a[i++]; else temp[k++] = a[j++]; } while (i <= m) temp[k++] = a[i++]; while (j <= n) temp[k++] = a[j++]; for (i = 0; i < k; i++) a[first + i] = temp[i]; } void mergesort(int a[], int first, int last, int temp[]) { if (first < last) { int mid = (first + last) / 2; mergesort(a, first, mid, temp); mergesort(a, mid + 1, last, temp); mergearray(a, first, mid, last, temp); } } bool MergeSort(int a[], int n) { int *p = new int[n]; if (p == NULL) return false; mergesort(a, 0, n - 1, p); delete[] p; return true; }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。