libsvm-javaAPI

获得

<dependency>
	<groupId>tw.edu.ntu.csie</groupId>
	<artifactId>libsvm</artifactId>
	<version>3.17</version>
</dependency>

libsvm-3.17.jar的结构见下图,
技术分享
default package:这里是工具制作者自己封装出来的一些类,它们都有main函数,可作为小工具直接使用。
libsvm package:核心文件。
关于default package:因为里面的类不在任意一个package中,所以我们的工程无法引用。解决办法是,通过maven得到源代码,然后复制粘贴到我们的package下面。

svm_train的输入为训练集,输出为得到的训练模型。
svm_predict的输入为待预测数据,输出为得到的预测结果。
它们的输入输出都是文件。

训练集

libsvm官方提供了一些训练集:http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
其中有一个breast-cancer训练集,见图:
技术分享
格式为: label featurIndex1:value1featurIndex2:value2  ...

训练模型model

它是一个文本文件,内容见图:

技术分享

预测

本例中直接把训练集作为待预测集,结果见下:

技术分享

预测集与训练集一样,每一行都要有label标签。当我们用已知的结果来检验预测的准确性时,那么下行输出的准确性统计就是真实的:

Accuracy = 90.9090909090909% (10/11) (classification)

当我们预测未知数据时(大多数情况都属于这一种),那么这行信息忽略就可以了。

代码

参数设置

-b 表示是否携带准确性估计信息。
训练阶段与预测阶段都需要携带-b参数。例:
 String[] testArgs = {"-b","1","d:/libsvm/breast-cancer.predict.txt", "d:/libsvm/breast-cancer.model", "d:/libsvm/breast-cancer.predict.result.txt"};
此时,预测结果的输出为:
技术分享
第一行是标签的集合。
从第二行开始,格式为: 预测结果    预测准确的概率    预测不准确的概率

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。