POJ 1273-Drainage Ditches(网络流_最大流_ISAP()算法和EK()算法)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 58538 | Accepted: 22485 |
Description
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
Input
Output
Sample Input
5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10
Sample Output
50题意:有n条路,m个点,让你求出以1为源点,m为汇点的最大流;
思路:典型的最大流增光路的算法。当且仅当残量网络中不存在s-t有向道路(增广路)时,此时的流是从s到t的最大流;
ISAP()
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <algorithm> #include <iostream> #include <queue> #include <set> using namespace std; const int inf=0x3f3f3f3f; //head存储前向星的有相同起点的弧,num存储各层剩余节点数目,d存储各节点的层数,cur存储当前弧,pre存储路径,即当前节点的上一个节点,用于回溯。 int head[1010],num[1010],d[1010],cur[1010],n,m,cnt,s,t,q[100010],nv,pre[1010]; int maxint=inf; struct node { int v,cap; int next; }edge[10010]; void add(int u,int v,int cap) { //加正向弧 edge[cnt].v=v; edge[cnt].cap=cap; edge[cnt].next=head[u]; head[u]=cnt++; //加反向弧 edge[cnt].v=u; edge[cnt].cap=0; edge[cnt].next=head[v]; head[v]=cnt++; } void bfs()//用bfs对每个节点进行分层 { //算法执行之前需要用 BFS 初始化 d 数组,方法是从 t 到 s 逆向进行 int i,j; memset(num,0,sizeof(num)); memset(d,-1,sizeof(d)); int f1=0,f2=0; q[f1++]=t;//从 d[t]=0; num[0]=1; while(f2<=f1){ int u=q[f2++]; for(i=head[u];i!=-1;i=edge[i].next){ int v=edge[i].v; if(d[v]!=-1) continue; d[v]=d[u]+1;//此节点的层数是上一节点的下一层 num[d[v]]++;//该层数的节点数+1 q[f1++]=v; } } } void isap() { memcpy(cur,head,sizeof(cur)); bfs(); int flow=0,u=pre[s]=s,i; while(d[s]<nv){//如果d[s]大于nv,说明有断层 if(u==t){ int f=maxint,pos; for(i=s;i!=t;i=edge[cur[i]].v){//找该路上的最少残余流量 if(f>edge[cur[i]].cap){ f=edge[cur[i]].cap; pos=i; } } for(i=s;i!=t;i=edge[cur[i]].v){//更新,将该路上的所有流量-最少参与流量 edge[cur[i]].cap-=f; edge[cur[i]^1].cap+=f; } flow+=f;//加入总流量 u=pos; } for(i=cur[u];i!=-1;i=edge[i].next){ if(d[edge[i].v]+1==d[u]&&edge[i].cap){ break; } } if(i!=-1){//如果找到可行增广路,更新 cur[u]=i;//更新当前弧 pre[edge[i].v]=u;//更新路径 u=edge[i].v;//回溯 } else{ if(--num[d[u]]==0) break;//gap优化 int mind=nv; for(i=head[u];i!=-1;i=edge[i].next){//找最小层次 if(edge[i].cap&&mind>d[edge[i].v]){ cur[u]=i; mind=d[edge[i].v]; } } d[u]=mind+1; num[d[u]]++; u=pre[u]; } } printf("%d\n",flow); } int main() { int i,a,b,c; while(~scanf("%d %d",&n,&m)){ memset(head,-1,sizeof(head)); cnt=0; while(n--){ scanf("%d %d %d",&a,&b,&c);//加边 add(a,b,c); } s=1; t=m; nv=t+1; isap(); } return 0; }
EK()
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <algorithm> #include <queue> using namespace std; #define inf 9999999999 int flow[210][210]; int maxflow[210],father[210],vis[210]; int max_flow; int m,i; void EK(int s,int e) { queue<int >q; int u,v; while(1) { memset(maxflow,0,sizeof(maxflow));//每次寻找增广路径都将每个点的流入容量置为0; memset(vis,0,sizeof(vis)); maxflow[s]=inf;//源点的流入量置为正无穷; q.push(s);//将源点压入队列; while(!q.empty())//当队列不为空 { u=q.front(); q.pop(); for(v=s;v<=e;v++) { if(!vis[v]&&flow[u][v]>0) { vis[v]=1; father[v]=u;//记录下他的父亲方便反向更新 q.push(v); maxflow[v]=min(maxflow[u],flow[u][v]);//当前点的容量为父亲点容量与边流量的较小者 } } if(maxflow[e]>0)//如果找到了汇点并且汇点容量不为0则清空队列 { while(!q.empty()) q.pop(); break; } } if(maxflow[e]==0)//已经找不到到汇点的增光路经了,就退出整个循环 break; for(i=e;i!=s;i=father[i]) { flow[father[i]][i]-=maxflow[e];//正向更新 flow[i][father[i]]+=maxflow[e];//反向更新 } max_flow+=maxflow[e];//更新最大流 } } int main() { int n; int si,ei,ci; while(~scanf("%d %d",&n,&m)) { max_flow=0;//最大流初始化; memset(flow,0,sizeof(flow)); for(i=0;i<n;i++) { scanf("%d %d %d",&si,&ei,&ci); flow[si][ei]+=ci; } EK(1,m); printf("%d\n",max_flow); } }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。