【Nginx核心模块】线程池模块
本节研究Nginx中线程池模块的相关实现;
总体说明
(1)线程池模块属于核心模块,因此其配置内存ngx_thread_pool_conf_t将会预先申请好;ngx_thread_pool_conf_t中主要管理各个线程池结构;
(2)在ngx_thread_pool_init_worker和 ngx_thread_pool_exit_worker分别会创建每一个线程池和销毁每一个线程池;
线程池模块
ngx_module_t ngx_thread_pool_module = { NGX_MODULE_V1, &ngx_thread_pool_module_ctx, /* module context */ ngx_thread_pool_commands, /* module directives */ NGX_CORE_MODULE, /* module type */ //核心模块 NULL, /* init master */ NULL, /* init module */ ngx_thread_pool_init_worker, /* init process */ NULL, /* init thread */ NULL, /* exit thread */ ngx_thread_pool_exit_worker, /* exit process */ NULL, /* exit master */ NGX_MODULE_V1_PADDING };
核心模块上下文
//核心模块上下文 static ngx_core_module_t ngx_thread_pool_module_ctx = { ngx_string("thread_pool"), ngx_thread_pool_create_conf, ngx_thread_pool_init_conf };
线程模块配置结构
//线程模块配置结构 typedef struct { ngx_array_t pools; //管理多个线程池 } ngx_thread_pool_conf_t;
申请配置内存
//线程模块配置申请内存 static void * ngx_thread_pool_create_conf(ngx_cycle_t *cycle) { ngx_thread_pool_conf_t *tcf; tcf = ngx_pcalloc(cycle->pool, sizeof(ngx_thread_pool_conf_t)); if (tcf == NULL) { return NULL; } //总的线程池的个数 if (ngx_array_init(&tcf->pools, cycle->pool, 4, sizeof(ngx_thread_pool_t *)) != NGX_OK) { return NULL; } return tcf; }
默认初始化配置
//线程模块配置初始化 static char * ngx_thread_pool_init_conf(ngx_cycle_t *cycle, void *conf) { ngx_thread_pool_conf_t *tcf = conf; ngx_uint_t i; ngx_thread_pool_t **tpp; tpp = tcf->pools.elts; for (i = 0; i < tcf->pools.nelts; i++) { if (tpp[i]->threads) { //线程数目不为0时,直接跳过 continue; } if (tpp[i]->name.len == ngx_thread_pool_default.len && ngx_strncmp(tpp[i]->name.data, ngx_thread_pool_default.data, ngx_thread_pool_default.len) == 0) { tpp[i]->threads = 32; //默认的线程数 tpp[i]->max_queue = 65536; //默认的任务数 continue; } ngx_log_error(NGX_LOG_EMERG, cycle->log, 0, "unknown thread pool \"%V\" in %s:%ui", &tpp[i]->name, tpp[i]->file, tpp[i]->line); return NGX_CONF_ERROR; } return NGX_CONF_OK; }
线程池模块配置项描述
static ngx_command_t ngx_thread_pool_commands[] = { { ngx_string("thread_pool"), NGX_MAIN_CONF|NGX_DIRECT_CONF|NGX_CONF_TAKE23, //main配置项目 ngx_thread_pool, //解析函数 0, 0, NULL }, ngx_null_command };
"ngx_thread_pool"配置解析
//"ngx_thread_pool"配置解析 static char * ngx_thread_pool(ngx_conf_t *cf, ngx_command_t *cmd, void *conf) { ngx_str_t *value; ngx_uint_t i; ngx_thread_pool_t *tp; value = cf->args->elts; tp = ngx_thread_pool_add(cf, &value[1]); //添加线程池 if (tp == NULL) { return NGX_CONF_ERROR; } if (tp->threads) { ngx_conf_log_error(NGX_LOG_EMERG, cf, 0, "duplicate thread pool \"%V\"", &tp->name); return NGX_CONF_ERROR; } tp->max_queue = 65536; for (i = 2; i < cf->args->nelts; i++) { if (ngx_strncmp(value[i].data, "threads=", 8) == 0) { tp->threads = ngx_atoi(value[i].data + 8, value[i].len - 8); //线程数目设置 if (tp->threads == (ngx_uint_t) NGX_ERROR || tp->threads == 0) { ngx_conf_log_error(NGX_LOG_EMERG, cf, 0, "invalid threads value \"%V\"", &value[i]); return NGX_CONF_ERROR; } continue; } if (ngx_strncmp(value[i].data, "max_queue=", 10) == 0) { tp->max_queue = ngx_atoi(value[i].data + 10, value[i].len - 10); //任务数设置 if (tp->max_queue == NGX_ERROR) { ngx_conf_log_error(NGX_LOG_EMERG, cf, 0, "invalid max_queue value \"%V\"", &value[i]); return NGX_CONF_ERROR; } continue; } } if (tp->threads == 0) { //若线程池为空时 ngx_conf_log_error(NGX_LOG_EMERG, cf, 0, "\"%V\" must have \"threads\" parameter", &cmd->name); return NGX_CONF_ERROR; } return NGX_CONF_OK; }
在worker进程进入主循环前调用
//在worker进程进入循环前调用 static ngx_int_t ngx_thread_pool_init_worker(ngx_cycle_t *cycle) { ngx_uint_t i; ngx_thread_pool_t **tpp; ngx_thread_pool_conf_t *tcf; if (ngx_process != NGX_PROCESS_WORKER && ngx_process != NGX_PROCESS_SINGLE) { return NGX_OK; } tcf = (ngx_thread_pool_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_thread_pool_module); if (tcf == NULL) { return NGX_OK; } //初始化已完成任务队列头 ngx_thread_pool_queue_init(&ngx_thread_pool_done); tpp = tcf->pools.elts; for (i = 0; i < tcf->pools.nelts; i++) { if (ngx_thread_pool_init(tpp[i], cycle->log, cycle->pool) != NGX_OK) { //初始化每一个线程池 return NGX_ERROR; } } return NGX_OK; }
在worker进程退出前调用
//在worker进程退出前调用 static void ngx_thread_pool_exit_worker(ngx_cycle_t *cycle) { ngx_uint_t i; ngx_thread_pool_t **tpp; ngx_thread_pool_conf_t *tcf; if (ngx_process != NGX_PROCESS_WORKER && ngx_process != NGX_PROCESS_SINGLE) { return; } tcf = (ngx_thread_pool_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_thread_pool_module); if (tcf == NULL) { return; } tpp = tcf->pools.elts; for (i = 0; i < tcf->pools.nelts; i++) { ngx_thread_pool_destroy(tpp[i]); //销毁每一个线程池 } }
线程池描述
//线程池描述 struct ngx_thread_pool_s { ngx_thread_mutex_t mtx; //互斥量 ngx_thread_pool_queue_t queue; //任务队列 ngx_int_t waiting; //等待的任务数 ngx_thread_cond_t cond; //条件 ngx_log_t *log; ngx_str_t name; //线程池名称 ngx_uint_t threads; //线程池数目 ngx_int_t max_queue; //任务数的最大个数 u_char *file; ngx_uint_t line; };
初始化一个线程池
//初始化一个线程池 static ngx_int_t ngx_thread_pool_init(ngx_thread_pool_t *tp, ngx_log_t *log, ngx_pool_t *pool) { int err; pthread_t tid; ngx_uint_t n; pthread_attr_t attr; if (ngx_notify == NULL) { //没有通知处理 ngx_log_error(NGX_LOG_ALERT, log, 0, "the configured event method cannot be used with thread pools"); return NGX_ERROR; } ngx_thread_pool_queue_init(&tp->queue); //初始化该线程池中任务队列 if (ngx_thread_mutex_create(&tp->mtx, log) != NGX_OK) { //创建该线程池的互斥量 return NGX_ERROR; } if (ngx_thread_cond_create(&tp->cond, log) != NGX_OK) { //创建线程池的条件变量 (void) ngx_thread_mutex_destroy(&tp->mtx, log); return NGX_ERROR; } tp->log = log; err = pthread_attr_init(&attr); //设置线程属性 if (err) { ngx_log_error(NGX_LOG_ALERT, log, err, "pthread_attr_init() failed"); return NGX_ERROR; } #if 0 err = pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN); //设置栈大小 if (err) { ngx_log_error(NGX_LOG_ALERT, log, err, "pthread_attr_setstacksize() failed"); return NGX_ERROR; } #endif for (n = 0; n < tp->threads; n++) { err = pthread_create(&tid, &attr, ngx_thread_pool_cycle, tp); //创建线程池, ngx_thread_pool_cycle为线程执行的函数 if (err) { ngx_log_error(NGX_LOG_ALERT, log, err, "pthread_create() failed"); return NGX_ERROR; } } (void) pthread_attr_destroy(&attr); //摧毁线程属性 return NGX_OK; }
销毁线程池
//销毁线程池 static void ngx_thread_pool_destroy(ngx_thread_pool_t *tp) { ngx_uint_t n; ngx_thread_task_t task; volatile ngx_uint_t lock; ngx_memzero(&task, sizeof(ngx_thread_task_t)); task.handler = ngx_thread_pool_exit_handler; //任务退出执行函数 task.ctx = (void *) &lock; //指向传入的参数 for (n = 0; n < tp->threads; n++) { //tp中所有的线程池添加该任务 lock = 1; if (ngx_thread_task_post(tp, &task) != NGX_OK) { return; } while (lock) { //主进程判断如果lock没有改变,就让CPU给其他线程执行,以此等待,相当于pthread_join ngx_sched_yield(); } task.event.active = 0; } //此时到这边,所有的线程都已经退出 (void) ngx_thread_cond_destroy(&tp->cond, tp->log); //条件变量销毁 (void) ngx_thread_mutex_destroy(&tp->mtx, tp->log); //互斥量销毁 } //各个线程的退出任务 static void ngx_thread_pool_exit_handler(void *data, ngx_log_t *log) { ngx_uint_t *lock = data; //获取参数 *lock = 0; //变为0 pthread_exit(0); }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。