算法导论中对二叉树链表中 Delete 函数的实现
上一篇博客中对 Delete 函数的实现是根据被删除节点子节点的子节点个数, 分为无子节点, 一个子节点和两个子节点的情况分别考虑的。
而这次的代码是根据算法导论的实现用 C++ 直译过来的, 代码如下:
void BinarySearchTree::Delete (const int32_t& value)
{
auto node = Search (value);
if (node == nullptr) {
cerr << "There is no such value!\n";
return;
}
PTreeNode successor =
(node->leftChild == nullptr || node->rightChild == nullptr)
? node
: Successor (node);
PTreeNode successorChild =
(successor->rightChild != nullptr)
? successor->leftChild
: successor->rightChild;
if (successorChild != nullptr){
successorChild->parent = successor->parent;
}
if (successor->parent.expired()) {
root = successorChild;
}
else {
auto successorParent = successor->parent.lock ();
if (successor == successorParent->leftChild) {
successorParent->leftChild = successorChild;
}
else {
successorParent->rightChild = successorChild;
}
}
if (node != successor) {
node->key = successor->key;
}
}
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。